Spaces:
Sleeping
Sleeping
import os | |
import random | |
from pathlib import Path | |
import numpy as np | |
import torch | |
from diffusers import AutoencoderKL, DDIMScheduler | |
from PIL import Image | |
from src.models.unet_2d_condition import UNet2DConditionModel | |
from src.models.unet_3d_emo import EMOUNet3DConditionModel | |
from src.models.whisper.audio2feature import load_audio_model | |
from src.pipelines.pipeline_echomimicv2 import EchoMimicV2Pipeline | |
from src.utils.util import save_videos_grid | |
from src.models.pose_encoder import PoseEncoder | |
from src.utils.dwpose_util import draw_pose_select_v2 | |
from moviepy.editor import VideoFileClip, AudioFileClip | |
import gradio as gr | |
from datetime import datetime | |
from torchao.quantization import quantize_, int8_weight_only | |
import gc | |
import tempfile | |
from pydub import AudioSegment | |
def cut_audio_to_5_seconds(audio_path): | |
try: | |
# Load the audio file | |
audio = AudioSegment.from_file(audio_path) | |
# Trim to a maximum of 5 seconds (5000 milliseconds) | |
trimmed_audio = audio[:5000] | |
# Create a temporary directory | |
temp_dir = tempfile.mkdtemp() | |
output_path = os.path.join(temp_dir, "trimmed_audio.wav") | |
# Export the trimmed audio | |
trimmed_audio.export(output_path, format="wav") | |
return output_path | |
except Exception as e: | |
return f"An error occurred while trying to trim audio: {str(e)}" | |
import requests | |
import tarfile | |
def download_and_setup_ffmpeg(): | |
url = "https://www.johnvansickle.com/ffmpeg/old-releases/ffmpeg-4.4-amd64-static.tar.xz" | |
download_path = "ffmpeg-4.4-amd64-static.tar.xz" | |
extract_dir = "ffmpeg-4.4-amd64-static" | |
try: | |
# Download the file | |
response = requests.get(url, stream=True) | |
response.raise_for_status() # Check for HTTP request errors | |
with open(download_path, "wb") as file: | |
for chunk in response.iter_content(chunk_size=8192): | |
file.write(chunk) | |
# Extract the tar.xz file | |
with tarfile.open(download_path, "r:xz") as tar: | |
tar.extractall(path=extract_dir) | |
# Set the FFMPEG_PATH environment variable | |
ffmpeg_binary_path = os.path.join(extract_dir, "ffmpeg-4.4-amd64-static", "ffmpeg") | |
os.environ["FFMPEG_PATH"] = ffmpeg_binary_path | |
return f"FFmpeg downloaded and setup successfully! Path: {ffmpeg_binary_path}" | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
download_and_setup_ffmpeg() | |
from huggingface_hub import snapshot_download | |
# Create the main "pretrained_weights" folder | |
os.makedirs("pretrained_weights", exist_ok=True) | |
# List of subdirectories to create inside "pretrained_weights" | |
subfolders = [ | |
"sd-vae-ft-mse", | |
"sd-image-variations-diffusers", | |
"audio_processor" | |
] | |
# Create each subdirectory | |
for subfolder in subfolders: | |
os.makedirs(os.path.join("pretrained_weights", subfolder), exist_ok=True) | |
snapshot_download( | |
repo_id = "BadToBest/EchoMimicV2", | |
local_dir="./pretrained_weights" | |
) | |
snapshot_download( | |
repo_id = "stabilityai/sd-vae-ft-mse", | |
local_dir="./pretrained_weights/sd-vae-ft-mse" | |
) | |
snapshot_download( | |
repo_id = "lambdalabs/sd-image-variations-diffusers", | |
local_dir="./pretrained_weights/sd-image-variations-diffusers" | |
) | |
is_shared_ui = True if "fffiloni/echomimic-v2" in os.environ['SPACE_ID'] else False | |
# Download and place the Whisper model in the "audio_processor" folder | |
def download_whisper_model(): | |
url = "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt" | |
save_path = os.path.join("pretrained_weights", "audio_processor", "tiny.pt") | |
try: | |
# Download the file | |
response = requests.get(url, stream=True) | |
response.raise_for_status() # Check for HTTP request errors | |
with open(save_path, "wb") as file: | |
for chunk in response.iter_content(chunk_size=8192): | |
file.write(chunk) | |
print(f"Whisper model downloaded and saved to {save_path}") | |
except Exception as e: | |
print(f"An error occurred while downloading the model: {str(e)}") | |
# Download the Whisper model | |
download_whisper_model() | |
total_vram_in_gb = torch.cuda.get_device_properties(0).total_memory / 1073741824 | |
print(f'\033[32mCUDA版本:{torch.version.cuda}\033[0m') | |
print(f'\033[32mPytorch版本:{torch.__version__}\033[0m') | |
print(f'\033[32m显卡型号:{torch.cuda.get_device_name()}\033[0m') | |
print(f'\033[32m显存大小:{total_vram_in_gb:.2f}GB\033[0m') | |
print(f'\033[32m精度:float16\033[0m') | |
dtype = torch.float16 | |
if torch.cuda.is_available(): | |
device = "cuda" | |
else: | |
print("cuda not available, using cpu") | |
device = "cpu" | |
ffmpeg_path = os.getenv('FFMPEG_PATH') | |
if ffmpeg_path is None: | |
print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=./ffmpeg-4.4-amd64-static") | |
elif ffmpeg_path not in os.getenv('PATH'): | |
print("add ffmpeg to path") | |
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}" | |
def generate(image_input, audio_input, pose_input, width, height, length, steps, sample_rate, cfg, fps, context_frames, context_overlap, quantization_input, seed, progress=gr.Progress(track_tqdm=True)): | |
gc.collect() | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
save_dir = Path("outputs") | |
save_dir.mkdir(exist_ok=True, parents=True) | |
############# model_init started ############# | |
## vae init | |
vae = AutoencoderKL.from_pretrained("./pretrained_weights/sd-vae-ft-mse").to(device, dtype=dtype) | |
if quantization_input: | |
quantize_(vae, int8_weight_only()) | |
print("Use int8 quantization.") | |
## reference net init | |
reference_unet = UNet2DConditionModel.from_pretrained("./pretrained_weights/sd-image-variations-diffusers", subfolder="unet", use_safetensors=False).to(dtype=dtype, device=device) | |
reference_unet.load_state_dict(torch.load("./pretrained_weights/reference_unet.pth", weights_only=True)) | |
if quantization_input: | |
quantize_(reference_unet, int8_weight_only()) | |
## denoising net init | |
if os.path.exists("./pretrained_weights/motion_module.pth"): | |
print('using motion module') | |
else: | |
exit("motion module not found") | |
### stage1 + stage2 | |
denoising_unet = EMOUNet3DConditionModel.from_pretrained_2d( | |
"./pretrained_weights/sd-image-variations-diffusers", | |
"./pretrained_weights/motion_module.pth", | |
subfolder="unet", | |
unet_additional_kwargs = { | |
"use_inflated_groupnorm": True, | |
"unet_use_cross_frame_attention": False, | |
"unet_use_temporal_attention": False, | |
"use_motion_module": True, | |
"cross_attention_dim": 384, | |
"motion_module_resolutions": [ | |
1, | |
2, | |
4, | |
8 | |
], | |
"motion_module_mid_block": True , | |
"motion_module_decoder_only": False, | |
"motion_module_type": "Vanilla", | |
"motion_module_kwargs":{ | |
"num_attention_heads": 8, | |
"num_transformer_block": 1, | |
"attention_block_types": [ | |
'Temporal_Self', | |
'Temporal_Self' | |
], | |
"temporal_position_encoding": True, | |
"temporal_position_encoding_max_len": 32, | |
"temporal_attention_dim_div": 1, | |
} | |
}, | |
).to(dtype=dtype, device=device) | |
denoising_unet.load_state_dict(torch.load("./pretrained_weights/denoising_unet.pth", weights_only=True),strict=False) | |
# pose net init | |
pose_net = PoseEncoder(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to(dtype=dtype, device=device) | |
pose_net.load_state_dict(torch.load("./pretrained_weights/pose_encoder.pth", weights_only=True)) | |
### load audio processor params | |
audio_processor = load_audio_model(model_path="./pretrained_weights/audio_processor/tiny.pt", device=device) | |
############# model_init finished ############# | |
sched_kwargs = { | |
"beta_start": 0.00085, | |
"beta_end": 0.012, | |
"beta_schedule": "linear", | |
"clip_sample": False, | |
"steps_offset": 1, | |
"prediction_type": "v_prediction", | |
"rescale_betas_zero_snr": True, | |
"timestep_spacing": "trailing" | |
} | |
scheduler = DDIMScheduler(**sched_kwargs) | |
pipe = EchoMimicV2Pipeline( | |
vae=vae, | |
reference_unet=reference_unet, | |
denoising_unet=denoising_unet, | |
audio_guider=audio_processor, | |
pose_encoder=pose_net, | |
scheduler=scheduler, | |
) | |
pipe = pipe.to(device, dtype=dtype) | |
if seed is not None and seed > -1: | |
generator = torch.manual_seed(seed) | |
else: | |
seed = random.randint(100, 1000000) | |
generator = torch.manual_seed(seed) | |
if is_shared_ui: | |
audio_input = cut_audio_to_5_seconds(audio_input) | |
print(f"Trimmed audio saved at: {audio_input}") | |
inputs_dict = { | |
"refimg": image_input, | |
"audio": audio_input, | |
"pose": pose_input, | |
} | |
print('Pose:', inputs_dict['pose']) | |
print('Reference:', inputs_dict['refimg']) | |
print('Audio:', inputs_dict['audio']) | |
save_name = f"{save_dir}/{timestamp}" | |
ref_image_pil = Image.open(inputs_dict['refimg']).resize((width, height)) | |
audio_clip = AudioFileClip(inputs_dict['audio']) | |
length = min(length, int(audio_clip.duration * fps), len(os.listdir(inputs_dict['pose']))) | |
start_idx = 0 | |
pose_list = [] | |
for index in range(start_idx, start_idx + length): | |
tgt_musk = np.zeros((width, height, 3)).astype('uint8') | |
tgt_musk_path = os.path.join(inputs_dict['pose'], "{}.npy".format(index)) | |
detected_pose = np.load(tgt_musk_path, allow_pickle=True).tolist() | |
imh_new, imw_new, rb, re, cb, ce = detected_pose['draw_pose_params'] | |
im = draw_pose_select_v2(detected_pose, imh_new, imw_new, ref_w=800) | |
im = np.transpose(np.array(im),(1, 2, 0)) | |
tgt_musk[rb:re,cb:ce,:] = im | |
tgt_musk_pil = Image.fromarray(np.array(tgt_musk)).convert('RGB') | |
pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=dtype, device=device).permute(2,0,1) / 255.0) | |
poses_tensor = torch.stack(pose_list, dim=1).unsqueeze(0) | |
audio_clip = AudioFileClip(inputs_dict['audio']) | |
audio_clip = audio_clip.set_duration(length / fps) | |
video = pipe( | |
ref_image_pil, | |
inputs_dict['audio'], | |
poses_tensor[:,:,:length,...], | |
width, | |
height, | |
length, | |
steps, | |
cfg, | |
generator=generator, | |
audio_sample_rate=sample_rate, | |
context_frames=context_frames, | |
fps=fps, | |
context_overlap=context_overlap, | |
start_idx=start_idx, | |
).videos | |
final_length = min(video.shape[2], poses_tensor.shape[2], length) | |
video_sig = video[:, :, :final_length, :, :] | |
save_videos_grid( | |
video_sig, | |
save_name + "_woa_sig.mp4", | |
n_rows=1, | |
fps=fps, | |
) | |
video_clip_sig = VideoFileClip(save_name + "_woa_sig.mp4",) | |
video_clip_sig = video_clip_sig.set_audio(audio_clip) | |
video_clip_sig.write_videofile(save_name + "_sig.mp4", codec="libx264", audio_codec="aac", threads=2) | |
video_output = save_name + "_sig.mp4" | |
seed_text = gr.update(visible=True, value=seed) | |
return video_output, seed_text | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# EchoMimicV2 | |
⚠️ This demonstration is for academic research and experiential use only. | |
""") | |
gr.HTML(""" | |
<div style="display:flex;column-gap:4px;"> | |
<a href="https://github.com/antgroup/echomimic_v2"> | |
<img src='https://img.shields.io/badge/GitHub-Repo-blue'> | |
</a> | |
<a href="https://antgroup.github.io/ai/echomimic_v2/"> | |
<img src='https://img.shields.io/badge/Project-Page-green'> | |
</a> | |
<a href="https://arxiv.org/abs/2411.10061"> | |
<img src='https://img.shields.io/badge/ArXiv-Paper-red'> | |
</a> | |
<a href="https://huggingface.co/spaces/fffiloni/echomimic-v2?duplicate=true"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space"> | |
</a> | |
<a href="https://huggingface.co/fffiloni"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF"> | |
</a> | |
</div> | |
""") | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
image_input = gr.Image(label="Image Input (Auto Scaling)", type="filepath") | |
audio_input = gr.Audio(label="Audio Input - max 5 seconds on shared UI", type="filepath") | |
pose_input = gr.Textbox(label="Pose Input (Directory Path)", placeholder="Please enter the directory path for pose data.", value="assets/halfbody_demo/pose/01", interactive=False, visible=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
width = gr.Number(label="Width (multiple of 16, recommended: 768)", value=768) | |
height = gr.Number(label="Height (multiple of 16, recommended: 768)", value=768) | |
length = gr.Number(label="Video Length (recommended: 240)", value=240) | |
with gr.Row(): | |
steps = gr.Number(label="Steps (recommended: 30)", value=20) | |
sample_rate = gr.Number(label="Sampling Rate (recommended: 16000)", value=16000) | |
cfg = gr.Number(label="CFG (recommended: 2.5)", value=2.5, step=0.1) | |
with gr.Row(): | |
fps = gr.Number(label="Frame Rate (recommended: 24)", value=24) | |
context_frames = gr.Number(label="Context Frames (recommended: 12)", value=12) | |
context_overlap = gr.Number(label="Context Overlap (recommended: 3)", value=3) | |
with gr.Row(): | |
quantization_input = gr.Checkbox(label="Int8 Quantization (recommended for users with 12GB VRAM, use audio no longer than 5 seconds)", value=False) | |
seed = gr.Number(label="Seed (-1 for random)", value=-1) | |
generate_button = gr.Button("🎬 Generate Video") | |
with gr.Column(): | |
video_output = gr.Video(label="Output Video") | |
seed_text = gr.Textbox(label="Seed", interactive=False, visible=False) | |
gr.Examples( | |
examples=[ | |
["EMTD_dataset/ref_imgs_by_FLUX/man/0001.png", "assets/halfbody_demo/audio/chinese/echomimicv2_man.wav"], | |
["EMTD_dataset/ref_imgs_by_FLUX/woman/0077.png", "assets/halfbody_demo/audio/chinese/echomimicv2_woman.wav"], | |
["EMTD_dataset/ref_imgs_by_FLUX/man/0003.png", "assets/halfbody_demo/audio/chinese/fighting.wav"], | |
["EMTD_dataset/ref_imgs_by_FLUX/woman/0033.png", "assets/halfbody_demo/audio/chinese/good.wav"], | |
["EMTD_dataset/ref_imgs_by_FLUX/man/0010.png", "assets/halfbody_demo/audio/chinese/news.wav"], | |
["EMTD_dataset/ref_imgs_by_FLUX/man/1168.png", "assets/halfbody_demo/audio/chinese/no_smoking.wav"], | |
["EMTD_dataset/ref_imgs_by_FLUX/woman/0057.png", "assets/halfbody_demo/audio/chinese/ultraman.wav"] | |
], | |
inputs=[image_input, audio_input], | |
label="Preset Characters and Audio", | |
) | |
generate_button.click( | |
generate, | |
inputs=[image_input, audio_input, pose_input, width, height, length, steps, sample_rate, cfg, fps, context_frames, context_overlap, quantization_input, seed], | |
outputs=[video_output, seed_text], | |
) | |
if __name__ == "__main__": | |
demo.queue() | |
demo.launch(show_api=False, show_error=True, ssr_mode=False) | |