echomimic-v2 / app.py
fffiloni's picture
Update app.py
7a168b3 verified
raw
history blame
16.2 kB
import os
import random
from pathlib import Path
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from PIL import Image
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_emo import EMOUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echomimicv2 import EchoMimicV2Pipeline
from src.utils.util import save_videos_grid
from src.models.pose_encoder import PoseEncoder
from src.utils.dwpose_util import draw_pose_select_v2
from moviepy.editor import VideoFileClip, AudioFileClip
import gradio as gr
from datetime import datetime
from torchao.quantization import quantize_, int8_weight_only
import gc
import tempfile
from pydub import AudioSegment
def cut_audio_to_5_seconds(audio_path):
try:
# Load the audio file
audio = AudioSegment.from_file(audio_path)
# Trim to a maximum of 5 seconds (5000 milliseconds)
trimmed_audio = audio[:5000]
# Create a temporary directory
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, "trimmed_audio.wav")
# Export the trimmed audio
trimmed_audio.export(output_path, format="wav")
return output_path
except Exception as e:
return f"An error occurred while trying to trim audio: {str(e)}"
import requests
import tarfile
def download_and_setup_ffmpeg():
url = "https://www.johnvansickle.com/ffmpeg/old-releases/ffmpeg-4.4-amd64-static.tar.xz"
download_path = "ffmpeg-4.4-amd64-static.tar.xz"
extract_dir = "ffmpeg-4.4-amd64-static"
try:
# Download the file
response = requests.get(url, stream=True)
response.raise_for_status() # Check for HTTP request errors
with open(download_path, "wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
# Extract the tar.xz file
with tarfile.open(download_path, "r:xz") as tar:
tar.extractall(path=extract_dir)
# Set the FFMPEG_PATH environment variable
ffmpeg_binary_path = os.path.join(extract_dir, "ffmpeg-4.4-amd64-static", "ffmpeg")
os.environ["FFMPEG_PATH"] = ffmpeg_binary_path
return f"FFmpeg downloaded and setup successfully! Path: {ffmpeg_binary_path}"
except Exception as e:
return f"An error occurred: {str(e)}"
download_and_setup_ffmpeg()
from huggingface_hub import snapshot_download
# Create the main "pretrained_weights" folder
os.makedirs("pretrained_weights", exist_ok=True)
# List of subdirectories to create inside "pretrained_weights"
subfolders = [
"sd-vae-ft-mse",
"sd-image-variations-diffusers",
"audio_processor"
]
# Create each subdirectory
for subfolder in subfolders:
os.makedirs(os.path.join("pretrained_weights", subfolder), exist_ok=True)
snapshot_download(
repo_id = "BadToBest/EchoMimicV2",
local_dir="./pretrained_weights"
)
snapshot_download(
repo_id = "stabilityai/sd-vae-ft-mse",
local_dir="./pretrained_weights/sd-vae-ft-mse"
)
snapshot_download(
repo_id = "lambdalabs/sd-image-variations-diffusers",
local_dir="./pretrained_weights/sd-image-variations-diffusers"
)
is_shared_ui = True if "fffiloni/echomimic-v2" in os.environ['SPACE_ID'] else False
# Download and place the Whisper model in the "audio_processor" folder
def download_whisper_model():
url = "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt"
save_path = os.path.join("pretrained_weights", "audio_processor", "tiny.pt")
try:
# Download the file
response = requests.get(url, stream=True)
response.raise_for_status() # Check for HTTP request errors
with open(save_path, "wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
print(f"Whisper model downloaded and saved to {save_path}")
except Exception as e:
print(f"An error occurred while downloading the model: {str(e)}")
# Download the Whisper model
download_whisper_model()
total_vram_in_gb = torch.cuda.get_device_properties(0).total_memory / 1073741824
print(f'\033[32mCUDA版本:{torch.version.cuda}\033[0m')
print(f'\033[32mPytorch版本:{torch.__version__}\033[0m')
print(f'\033[32m显卡型号:{torch.cuda.get_device_name()}\033[0m')
print(f'\033[32m显存大小:{total_vram_in_gb:.2f}GB\033[0m')
print(f'\033[32m精度:float16\033[0m')
dtype = torch.float16
if torch.cuda.is_available():
device = "cuda"
else:
print("cuda not available, using cpu")
device = "cpu"
ffmpeg_path = os.getenv('FFMPEG_PATH')
if ffmpeg_path is None:
print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=./ffmpeg-4.4-amd64-static")
elif ffmpeg_path not in os.getenv('PATH'):
print("add ffmpeg to path")
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"
def generate(image_input, audio_input, pose_input, width, height, length, steps, sample_rate, cfg, fps, context_frames, context_overlap, quantization_input, seed, progress=gr.Progress(track_tqdm=True)):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
save_dir = Path("outputs")
save_dir.mkdir(exist_ok=True, parents=True)
############# model_init started #############
## vae init
vae = AutoencoderKL.from_pretrained("./pretrained_weights/sd-vae-ft-mse").to(device, dtype=dtype)
if quantization_input:
quantize_(vae, int8_weight_only())
print("Use int8 quantization.")
## reference net init
reference_unet = UNet2DConditionModel.from_pretrained("./pretrained_weights/sd-image-variations-diffusers", subfolder="unet", use_safetensors=False).to(dtype=dtype, device=device)
reference_unet.load_state_dict(torch.load("./pretrained_weights/reference_unet.pth", weights_only=True))
if quantization_input:
quantize_(reference_unet, int8_weight_only())
## denoising net init
if os.path.exists("./pretrained_weights/motion_module.pth"):
print('using motion module')
else:
exit("motion module not found")
### stage1 + stage2
denoising_unet = EMOUNet3DConditionModel.from_pretrained_2d(
"./pretrained_weights/sd-image-variations-diffusers",
"./pretrained_weights/motion_module.pth",
subfolder="unet",
unet_additional_kwargs = {
"use_inflated_groupnorm": True,
"unet_use_cross_frame_attention": False,
"unet_use_temporal_attention": False,
"use_motion_module": True,
"cross_attention_dim": 384,
"motion_module_resolutions": [
1,
2,
4,
8
],
"motion_module_mid_block": True ,
"motion_module_decoder_only": False,
"motion_module_type": "Vanilla",
"motion_module_kwargs":{
"num_attention_heads": 8,
"num_transformer_block": 1,
"attention_block_types": [
'Temporal_Self',
'Temporal_Self'
],
"temporal_position_encoding": True,
"temporal_position_encoding_max_len": 32,
"temporal_attention_dim_div": 1,
}
},
).to(dtype=dtype, device=device)
denoising_unet.load_state_dict(torch.load("./pretrained_weights/denoising_unet.pth", weights_only=True),strict=False)
# pose net init
pose_net = PoseEncoder(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to(dtype=dtype, device=device)
pose_net.load_state_dict(torch.load("./pretrained_weights/pose_encoder.pth", weights_only=True))
### load audio processor params
audio_processor = load_audio_model(model_path="./pretrained_weights/audio_processor/tiny.pt", device=device)
############# model_init finished #############
sched_kwargs = {
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "linear",
"clip_sample": False,
"steps_offset": 1,
"prediction_type": "v_prediction",
"rescale_betas_zero_snr": True,
"timestep_spacing": "trailing"
}
scheduler = DDIMScheduler(**sched_kwargs)
pipe = EchoMimicV2Pipeline(
vae=vae,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
audio_guider=audio_processor,
pose_encoder=pose_net,
scheduler=scheduler,
)
pipe = pipe.to(device, dtype=dtype)
if seed is not None and seed > -1:
generator = torch.manual_seed(seed)
else:
seed = random.randint(100, 1000000)
generator = torch.manual_seed(seed)
if is_shared_ui:
audio_input = cut_audio_to_5_seconds(audio_input)
print(f"Trimmed audio saved at: {audio_input}")
inputs_dict = {
"refimg": image_input,
"audio": audio_input,
"pose": pose_input,
}
print('Pose:', inputs_dict['pose'])
print('Reference:', inputs_dict['refimg'])
print('Audio:', inputs_dict['audio'])
save_name = f"{save_dir}/{timestamp}"
ref_image_pil = Image.open(inputs_dict['refimg']).resize((width, height))
audio_clip = AudioFileClip(inputs_dict['audio'])
length = min(length, int(audio_clip.duration * fps), len(os.listdir(inputs_dict['pose'])))
start_idx = 0
pose_list = []
for index in range(start_idx, start_idx + length):
tgt_musk = np.zeros((width, height, 3)).astype('uint8')
tgt_musk_path = os.path.join(inputs_dict['pose'], "{}.npy".format(index))
detected_pose = np.load(tgt_musk_path, allow_pickle=True).tolist()
imh_new, imw_new, rb, re, cb, ce = detected_pose['draw_pose_params']
im = draw_pose_select_v2(detected_pose, imh_new, imw_new, ref_w=800)
im = np.transpose(np.array(im),(1, 2, 0))
tgt_musk[rb:re,cb:ce,:] = im
tgt_musk_pil = Image.fromarray(np.array(tgt_musk)).convert('RGB')
pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=dtype, device=device).permute(2,0,1) / 255.0)
poses_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
audio_clip = AudioFileClip(inputs_dict['audio'])
audio_clip = audio_clip.set_duration(length / fps)
video = pipe(
ref_image_pil,
inputs_dict['audio'],
poses_tensor[:,:,:length,...],
width,
height,
length,
steps,
cfg,
generator=generator,
audio_sample_rate=sample_rate,
context_frames=context_frames,
fps=fps,
context_overlap=context_overlap,
start_idx=start_idx,
).videos
final_length = min(video.shape[2], poses_tensor.shape[2], length)
video_sig = video[:, :, :final_length, :, :]
save_videos_grid(
video_sig,
save_name + "_woa_sig.mp4",
n_rows=1,
fps=fps,
)
video_clip_sig = VideoFileClip(save_name + "_woa_sig.mp4",)
video_clip_sig = video_clip_sig.set_audio(audio_clip)
video_clip_sig.write_videofile(save_name + "_sig.mp4", codec="libx264", audio_codec="aac", threads=2)
video_output = save_name + "_sig.mp4"
seed_text = gr.update(visible=True, value=seed)
return video_output, seed_text
with gr.Blocks() as demo:
gr.Markdown("""
# EchoMimicV2
⚠️ This demonstration is for academic research and experiential use only.
""")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/antgroup/echomimic_v2">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://antgroup.github.io/ai/echomimic_v2/">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://arxiv.org/abs/2411.10061">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/echomimic-v2?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Group():
image_input = gr.Image(label="Image Input (Auto Scaling)", type="filepath")
audio_input = gr.Audio(label="Audio Input - max 5 seconds on shared UI", type="filepath")
pose_input = gr.Textbox(label="Pose Input (Directory Path)", placeholder="Please enter the directory path for pose data.", value="assets/halfbody_demo/pose/01", interactive=False, visible=False)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
width = gr.Number(label="Width (multiple of 16, recommended: 768)", value=768)
height = gr.Number(label="Height (multiple of 16, recommended: 768)", value=768)
length = gr.Number(label="Video Length (recommended: 240)", value=240)
with gr.Row():
steps = gr.Number(label="Steps (recommended: 30)", value=20)
sample_rate = gr.Number(label="Sampling Rate (recommended: 16000)", value=16000)
cfg = gr.Number(label="CFG (recommended: 2.5)", value=2.5, step=0.1)
with gr.Row():
fps = gr.Number(label="Frame Rate (recommended: 24)", value=24)
context_frames = gr.Number(label="Context Frames (recommended: 12)", value=12)
context_overlap = gr.Number(label="Context Overlap (recommended: 3)", value=3)
with gr.Row():
quantization_input = gr.Checkbox(label="Int8 Quantization (recommended for users with 12GB VRAM, use audio no longer than 5 seconds)", value=False)
seed = gr.Number(label="Seed (-1 for random)", value=-1)
generate_button = gr.Button("🎬 Generate Video")
with gr.Column():
video_output = gr.Video(label="Output Video")
seed_text = gr.Textbox(label="Seed", interactive=False, visible=False)
gr.Examples(
examples=[
["EMTD_dataset/ref_imgs_by_FLUX/man/0001.png", "assets/halfbody_demo/audio/chinese/echomimicv2_man.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/woman/0077.png", "assets/halfbody_demo/audio/chinese/echomimicv2_woman.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/man/0003.png", "assets/halfbody_demo/audio/chinese/fighting.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/woman/0033.png", "assets/halfbody_demo/audio/chinese/good.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/man/0010.png", "assets/halfbody_demo/audio/chinese/news.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/man/1168.png", "assets/halfbody_demo/audio/chinese/no_smoking.wav"],
["EMTD_dataset/ref_imgs_by_FLUX/woman/0057.png", "assets/halfbody_demo/audio/chinese/ultraman.wav"]
],
inputs=[image_input, audio_input],
label="Preset Characters and Audio",
)
generate_button.click(
generate,
inputs=[image_input, audio_input, pose_input, width, height, length, steps, sample_rate, cfg, fps, context_frames, context_overlap, quantization_input, seed],
outputs=[video_output, seed_text],
)
if __name__ == "__main__":
demo.queue()
demo.launch(show_api=False, show_error=True, ssr_mode=False)