Spaces:
Running
on
Zero
Running
on
Zero
Most OP update
Browse files
app.py
CHANGED
@@ -47,178 +47,69 @@ pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
|
47 |
|
48 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
49 |
|
50 |
-
prompt = "high quality"
|
51 |
-
(
|
52 |
-
prompt_embeds,
|
53 |
-
negative_prompt_embeds,
|
54 |
-
pooled_prompt_embeds,
|
55 |
-
negative_pooled_prompt_embeds,
|
56 |
-
) = pipe.encode_prompt(prompt, "cuda", True)
|
57 |
-
|
58 |
-
|
59 |
|
60 |
@spaces.GPU
|
61 |
-
def infer(image, model_selection,
|
62 |
-
|
63 |
source = image
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
elif ratio_choice == "9:16":
|
124 |
-
|
125 |
-
target_ratio=(9, 16)
|
126 |
-
target_height=1280
|
127 |
-
overlap=overlap_width
|
128 |
-
#fade_width=24
|
129 |
-
max_width = 720
|
130 |
-
# Resize the image if it's wider than max_width
|
131 |
-
if source.width > max_width:
|
132 |
-
scale_factor = max_width / source.width
|
133 |
-
new_width = max_width
|
134 |
-
new_height = int(source.height * scale_factor)
|
135 |
-
source = source.resize((new_width, new_height), Image.LANCZOS)
|
136 |
-
|
137 |
-
# Calculate the required height for 9:16 ratio
|
138 |
-
target_height = (source.width * target_ratio[1]) // target_ratio[0]
|
139 |
-
|
140 |
-
# Calculate margins (only top and bottom)
|
141 |
-
margin_y = (target_height - source.height) // 2
|
142 |
-
|
143 |
-
# Calculate new output size
|
144 |
-
output_size = (source.width, target_height)
|
145 |
-
|
146 |
-
# Create a white background
|
147 |
-
background = Image.new('RGB', output_size, (255, 255, 255))
|
148 |
-
|
149 |
-
# Calculate position to paste the original image
|
150 |
-
position = (0, margin_y)
|
151 |
-
|
152 |
-
# Paste the original image onto the white background
|
153 |
-
background.paste(source, position)
|
154 |
-
|
155 |
-
# Create the mask
|
156 |
-
mask = Image.new('L', output_size, 255) # Start with all white
|
157 |
-
mask_draw = ImageDraw.Draw(mask)
|
158 |
-
mask_draw.rectangle([
|
159 |
-
(overlap, margin_y + overlap),
|
160 |
-
(source.width - overlap, margin_y + source.height - overlap)
|
161 |
-
], fill=0)
|
162 |
-
|
163 |
-
# Prepare the image for ControlNet
|
164 |
-
cnet_image = background.copy()
|
165 |
-
cnet_image.paste(0, (0, 0), mask)
|
166 |
-
|
167 |
-
for image in pipe(
|
168 |
-
prompt_embeds=prompt_embeds,
|
169 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
170 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
171 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
172 |
-
image=cnet_image,
|
173 |
-
):
|
174 |
-
yield cnet_image, image
|
175 |
-
|
176 |
-
image = image.convert("RGBA")
|
177 |
-
cnet_image.paste(image, (0, 0), mask)
|
178 |
-
|
179 |
-
yield background, cnet_image
|
180 |
-
|
181 |
-
elif ratio_choice == "1:1":
|
182 |
-
target_ratio = (1, 1)
|
183 |
-
target_size = (1024, 1024)
|
184 |
-
overlap = overlap_width
|
185 |
-
|
186 |
-
if source.width > target_size[0] or source.height > target_size[1]:
|
187 |
-
scale_factor = min(target_size[0] / source.width, target_size[1] / source.height)
|
188 |
-
new_width = int(source.width * scale_factor)
|
189 |
-
new_height = int(source.height * scale_factor)
|
190 |
-
source = source.resize((new_width, new_height), Image.LANCZOS)
|
191 |
-
|
192 |
-
margin_x = (target_size[0] - source.width) // 2
|
193 |
-
margin_y = (target_size[1] - source.height) // 2
|
194 |
-
|
195 |
-
background = Image.new('RGB', target_size, (255, 255, 255))
|
196 |
-
background.paste(source, (margin_x, margin_y))
|
197 |
-
|
198 |
-
mask = Image.new('L', target_size, 255)
|
199 |
-
mask_draw = ImageDraw.Draw(mask)
|
200 |
-
mask_draw.rectangle([
|
201 |
-
(margin_x + overlap, margin_y + overlap),
|
202 |
-
(margin_x + source.width - overlap, margin_y + source.height - overlap)
|
203 |
-
], fill=0)
|
204 |
-
|
205 |
-
cnet_image = background.copy()
|
206 |
-
cnet_image.paste(0, (0, 0), mask)
|
207 |
-
|
208 |
-
for image in pipe(
|
209 |
-
prompt_embeds=prompt_embeds,
|
210 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
211 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
212 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
213 |
-
image=cnet_image,
|
214 |
-
):
|
215 |
-
yield cnet_image, image
|
216 |
-
|
217 |
-
image = image.convert("RGBA")
|
218 |
-
cnet_image.paste(image, (0, 0), mask)
|
219 |
-
|
220 |
-
yield background, cnet_image
|
221 |
-
|
222 |
|
223 |
def clear_result():
|
224 |
return gr.update(value=None)
|
@@ -237,50 +128,61 @@ title = """<h1 align="center">Diffusers Image Outpaint</h1>
|
|
237 |
|
238 |
with gr.Blocks(css=css) as demo:
|
239 |
with gr.Column():
|
240 |
-
|
241 |
gr.HTML(title)
|
242 |
|
243 |
with gr.Row():
|
244 |
-
|
245 |
with gr.Column():
|
246 |
-
|
247 |
input_image = gr.Image(
|
248 |
type="pil",
|
249 |
label="Input Image",
|
250 |
sources=["upload"],
|
251 |
)
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
with gr.Row():
|
254 |
-
|
255 |
-
label="
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
)
|
259 |
model_selection = gr.Dropdown(
|
260 |
choices=list(MODELS.keys()),
|
261 |
value="RealVisXL V5.0 Lightning",
|
262 |
label="Model",
|
263 |
)
|
|
|
264 |
|
265 |
overlap_width = gr.Slider(
|
266 |
label="Mask overlap width",
|
267 |
-
minimum
|
268 |
-
maximum
|
269 |
-
value
|
270 |
-
step
|
271 |
)
|
272 |
-
|
273 |
-
run_button = gr.Button("Generate")
|
274 |
|
275 |
gr.Examples(
|
276 |
-
examples
|
277 |
-
["./examples/example_1.webp", "RealVisXL V5.0 Lightning",
|
278 |
-
["./examples/example_2.jpg", "RealVisXL V5.0 Lightning",
|
279 |
-
["./examples/example_3.jpg", "RealVisXL V5.0 Lightning",
|
280 |
],
|
281 |
-
inputs
|
282 |
)
|
283 |
-
|
284 |
with gr.Column():
|
285 |
result = ImageSlider(
|
286 |
interactive=False,
|
@@ -293,9 +195,18 @@ with gr.Blocks(css=css) as demo:
|
|
293 |
outputs=result,
|
294 |
).then(
|
295 |
fn=infer,
|
296 |
-
inputs=[input_image, model_selection,
|
297 |
outputs=result,
|
298 |
)
|
299 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
demo.launch(share=False)
|
|
|
47 |
|
48 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
@spaces.GPU
|
52 |
+
def infer(image, model_selection, width, height, overlap_width, num_inference_steps, prompt_input=None):
|
|
|
53 |
source = image
|
54 |
+
target_size = (width, height)
|
55 |
+
target_ratio = (width, height) # Calculate aspect ratio from width and height
|
56 |
+
overlap = overlap_width
|
57 |
+
|
58 |
+
# Upscale if source is smaller than target in both dimensions
|
59 |
+
if source.width < target_size[0] and source.height < target_size[1]:
|
60 |
+
scale_factor = min(target_size[0] / source.width, target_size[1] / source.height)
|
61 |
+
new_width = int(source.width * scale_factor)
|
62 |
+
new_height = int(source.height * scale_factor)
|
63 |
+
source = source.resize((new_width, new_height), Image.LANCZOS)
|
64 |
+
|
65 |
+
if source.width > target_size[0] or source.height > target_size[1]:
|
66 |
+
scale_factor = min(target_size[0] / source.width, target_size[1] / source.height)
|
67 |
+
new_width = int(source.width * scale_factor)
|
68 |
+
new_height = int(source.height * scale_factor)
|
69 |
+
source = source.resize((new_width, new_height), Image.LANCZOS)
|
70 |
+
|
71 |
+
margin_x = (target_size[0] - source.width) // 2
|
72 |
+
margin_y = (target_size[1] - source.height) // 2
|
73 |
+
|
74 |
+
background = Image.new('RGB', target_size, (255, 255, 255))
|
75 |
+
background.paste(source, (margin_x, margin_y))
|
76 |
+
|
77 |
+
mask = Image.new('L', target_size, 255)
|
78 |
+
mask_draw = ImageDraw.Draw(mask)
|
79 |
+
mask_draw.rectangle([
|
80 |
+
(margin_x + overlap, margin_y + overlap),
|
81 |
+
(margin_x + source.width - overlap, margin_y + source.height - overlap)
|
82 |
+
], fill=0)
|
83 |
+
|
84 |
+
cnet_image = background.copy()
|
85 |
+
cnet_image.paste(0, (0, 0), mask)
|
86 |
+
|
87 |
+
final_prompt = "high quality"
|
88 |
+
if prompt_input.strip() != "":
|
89 |
+
final_prompt += ", " + prompt_input
|
90 |
+
|
91 |
+
(
|
92 |
+
prompt_embeds,
|
93 |
+
negative_prompt_embeds,
|
94 |
+
pooled_prompt_embeds,
|
95 |
+
negative_pooled_prompt_embeds,
|
96 |
+
) = pipe.encode_prompt(final_prompt, "cuda", True)
|
97 |
+
|
98 |
+
for image in pipe(
|
99 |
+
prompt_embeds=prompt_embeds,
|
100 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
101 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
102 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
103 |
+
image=cnet_image,
|
104 |
+
num_inference_steps=num_inference_steps
|
105 |
+
):
|
106 |
+
yield cnet_image, image
|
107 |
+
|
108 |
+
image = image.convert("RGBA")
|
109 |
+
cnet_image.paste(image, (0, 0), mask)
|
110 |
+
|
111 |
+
yield background, cnet_image
|
112 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
def clear_result():
|
115 |
return gr.update(value=None)
|
|
|
128 |
|
129 |
with gr.Blocks(css=css) as demo:
|
130 |
with gr.Column():
|
|
|
131 |
gr.HTML(title)
|
132 |
|
133 |
with gr.Row():
|
|
|
134 |
with gr.Column():
|
|
|
135 |
input_image = gr.Image(
|
136 |
type="pil",
|
137 |
label="Input Image",
|
138 |
sources=["upload"],
|
139 |
)
|
140 |
+
|
141 |
+
with gr.Row():
|
142 |
+
with gr.Column(scale=2):
|
143 |
+
prompt_input = gr.Textbox(label="Prompt (Optional)")
|
144 |
+
with gr.Column(scale=1):
|
145 |
+
run_button = gr.Button("Generate")
|
146 |
+
|
147 |
with gr.Row():
|
148 |
+
width_slider = gr.Slider(
|
149 |
+
label="Width",
|
150 |
+
minimum=720,
|
151 |
+
maximum=1440,
|
152 |
+
step=8,
|
153 |
+
value=1440, # Set a default value
|
154 |
+
)
|
155 |
+
height_slider = gr.Slider(
|
156 |
+
label="Height",
|
157 |
+
minimum=720,
|
158 |
+
maximum=1440,
|
159 |
+
step=8,
|
160 |
+
value=1024, # Set a default value
|
161 |
)
|
162 |
model_selection = gr.Dropdown(
|
163 |
choices=list(MODELS.keys()),
|
164 |
value="RealVisXL V5.0 Lightning",
|
165 |
label="Model",
|
166 |
)
|
167 |
+
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8 )
|
168 |
|
169 |
overlap_width = gr.Slider(
|
170 |
label="Mask overlap width",
|
171 |
+
minimum=1,
|
172 |
+
maximum=50,
|
173 |
+
value=42,
|
174 |
+
step=1
|
175 |
)
|
|
|
|
|
176 |
|
177 |
gr.Examples(
|
178 |
+
examples=[
|
179 |
+
["./examples/example_1.webp", "RealVisXL V5.0 Lightning", 1280, 720],
|
180 |
+
["./examples/example_2.jpg", "RealVisXL V5.0 Lightning", 720, 1280],
|
181 |
+
["./examples/example_3.jpg", "RealVisXL V5.0 Lightning", 1024, 1024],
|
182 |
],
|
183 |
+
inputs=[input_image, model_selection, width_slider, height_slider],
|
184 |
)
|
185 |
+
|
186 |
with gr.Column():
|
187 |
result = ImageSlider(
|
188 |
interactive=False,
|
|
|
195 |
outputs=result,
|
196 |
).then(
|
197 |
fn=infer,
|
198 |
+
inputs=[input_image, model_selection, width_slider, height_slider, overlap_width, num_inference_steps, prompt_input],
|
199 |
outputs=result,
|
200 |
)
|
201 |
|
202 |
+
prompt_input.submit(
|
203 |
+
fn=clear_result,
|
204 |
+
inputs=None,
|
205 |
+
outputs=result,
|
206 |
+
).then(
|
207 |
+
fn=infer,
|
208 |
+
inputs=[input_image, model_selection, width_slider, height_slider, overlap_width, num_inference_steps, prompt_input],
|
209 |
+
outputs=result,
|
210 |
+
)
|
211 |
|
212 |
demo.launch(share=False)
|