Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from .vit import ( | |
_make_pretrained_vitb_rn50_384, | |
_make_pretrained_vitl16_384, | |
_make_pretrained_vitb16_384, | |
forward_vit, | |
) | |
def _make_encoder( | |
backbone, | |
features, | |
use_pretrained, | |
groups=1, | |
expand=False, | |
exportable=True, | |
hooks=None, | |
use_vit_only=False, | |
use_readout="ignore", | |
enable_attention_hooks=False, | |
): | |
if backbone == "vitl16_384": | |
pretrained = _make_pretrained_vitl16_384( | |
use_pretrained, | |
hooks=hooks, | |
use_readout=use_readout, | |
enable_attention_hooks=enable_attention_hooks, | |
) | |
scratch = _make_scratch( | |
[256, 512, 1024, 1024], features, groups=groups, expand=expand | |
) # ViT-L/16 - 85.0% Top1 (backbone) | |
elif backbone == "vitb_rn50_384": | |
pretrained = _make_pretrained_vitb_rn50_384( | |
use_pretrained, | |
hooks=hooks, | |
use_vit_only=use_vit_only, | |
use_readout=use_readout, | |
enable_attention_hooks=enable_attention_hooks, | |
) | |
scratch = _make_scratch( | |
[256, 512, 768, 768], features, groups=groups, expand=expand | |
) # ViT-H/16 - 85.0% Top1 (backbone) | |
elif backbone == "vitb16_384": | |
pretrained = _make_pretrained_vitb16_384( | |
use_pretrained, | |
hooks=hooks, | |
use_readout=use_readout, | |
enable_attention_hooks=enable_attention_hooks, | |
) | |
scratch = _make_scratch( | |
[96, 192, 384, 768], features, groups=groups, expand=expand | |
) # ViT-B/16 - 84.6% Top1 (backbone) | |
elif backbone == "resnext101_wsl": | |
pretrained = _make_pretrained_resnext101_wsl(use_pretrained) | |
scratch = _make_scratch( | |
[256, 512, 1024, 2048], features, groups=groups, expand=expand | |
) # efficientnet_lite3 | |
else: | |
print(f"Backbone '{backbone}' not implemented") | |
assert False | |
return pretrained, scratch | |
def _make_scratch(in_shape, out_shape, groups=1, expand=False): | |
scratch = nn.Module() | |
out_shape1 = out_shape | |
out_shape2 = out_shape | |
out_shape3 = out_shape | |
out_shape4 = out_shape | |
if expand == True: | |
out_shape1 = out_shape | |
out_shape2 = out_shape * 2 | |
out_shape3 = out_shape * 4 | |
out_shape4 = out_shape * 8 | |
scratch.layer1_rn = nn.Conv2d( | |
in_shape[0], | |
out_shape1, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False, | |
groups=groups, | |
) | |
scratch.layer2_rn = nn.Conv2d( | |
in_shape[1], | |
out_shape2, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False, | |
groups=groups, | |
) | |
scratch.layer3_rn = nn.Conv2d( | |
in_shape[2], | |
out_shape3, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False, | |
groups=groups, | |
) | |
scratch.layer4_rn = nn.Conv2d( | |
in_shape[3], | |
out_shape4, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=False, | |
groups=groups, | |
) | |
return scratch | |
def _make_resnet_backbone(resnet): | |
pretrained = nn.Module() | |
pretrained.layer1 = nn.Sequential( | |
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1 | |
) | |
pretrained.layer2 = resnet.layer2 | |
pretrained.layer3 = resnet.layer3 | |
pretrained.layer4 = resnet.layer4 | |
return pretrained | |
def _make_pretrained_resnext101_wsl(use_pretrained): | |
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl") | |
return _make_resnet_backbone(resnet) | |
class Interpolate(nn.Module): | |
"""Interpolation module.""" | |
def __init__(self, scale_factor, mode, align_corners=False): | |
"""Init. | |
Args: | |
scale_factor (float): scaling | |
mode (str): interpolation mode | |
""" | |
super(Interpolate, self).__init__() | |
self.interp = nn.functional.interpolate | |
self.scale_factor = scale_factor | |
self.mode = mode | |
self.align_corners = align_corners | |
def forward(self, x): | |
"""Forward pass. | |
Args: | |
x (tensor): input | |
Returns: | |
tensor: interpolated data | |
""" | |
x = self.interp( | |
x, | |
scale_factor=self.scale_factor, | |
mode=self.mode, | |
align_corners=self.align_corners, | |
) | |
return x | |
class ResidualConvUnit(nn.Module): | |
"""Residual convolution module.""" | |
def __init__(self, features): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super().__init__() | |
self.conv1 = nn.Conv2d( | |
features, features, kernel_size=3, stride=1, padding=1, bias=True | |
) | |
self.conv2 = nn.Conv2d( | |
features, features, kernel_size=3, stride=1, padding=1, bias=True | |
) | |
self.relu = nn.ReLU(inplace=True) | |
def forward(self, x): | |
"""Forward pass. | |
Args: | |
x (tensor): input | |
Returns: | |
tensor: output | |
""" | |
out = self.relu(x) | |
out = self.conv1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
return out + x | |
class FeatureFusionBlock(nn.Module): | |
"""Feature fusion block.""" | |
def __init__(self, features): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super(FeatureFusionBlock, self).__init__() | |
self.resConfUnit1 = ResidualConvUnit(features) | |
self.resConfUnit2 = ResidualConvUnit(features) | |
def forward(self, *xs): | |
"""Forward pass. | |
Returns: | |
tensor: output | |
""" | |
output = xs[0] | |
if len(xs) == 2: | |
output += self.resConfUnit1(xs[1]) | |
output = self.resConfUnit2(output) | |
output = nn.functional.interpolate( | |
output, scale_factor=2, mode="bilinear", align_corners=True | |
) | |
return output | |
class ResidualConvUnit_custom(nn.Module): | |
"""Residual convolution module.""" | |
def __init__(self, features, activation, bn): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super().__init__() | |
self.bn = bn | |
self.groups = 1 | |
self.conv1 = nn.Conv2d( | |
features, | |
features, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=not self.bn, | |
groups=self.groups, | |
) | |
self.conv2 = nn.Conv2d( | |
features, | |
features, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=not self.bn, | |
groups=self.groups, | |
) | |
if self.bn == True: | |
self.bn1 = nn.BatchNorm2d(features) | |
self.bn2 = nn.BatchNorm2d(features) | |
self.activation = activation | |
self.skip_add = nn.quantized.FloatFunctional() | |
def forward(self, x): | |
"""Forward pass. | |
Args: | |
x (tensor): input | |
Returns: | |
tensor: output | |
""" | |
out = self.activation(x) | |
out = self.conv1(out) | |
if self.bn == True: | |
out = self.bn1(out) | |
out = self.activation(out) | |
out = self.conv2(out) | |
if self.bn == True: | |
out = self.bn2(out) | |
if self.groups > 1: | |
out = self.conv_merge(out) | |
return self.skip_add.add(out, x) | |
# return out + x | |
class FeatureFusionBlock_custom(nn.Module): | |
"""Feature fusion block.""" | |
def __init__( | |
self, | |
features, | |
activation, | |
deconv=False, | |
bn=False, | |
expand=False, | |
align_corners=True, | |
): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super(FeatureFusionBlock_custom, self).__init__() | |
self.deconv = deconv | |
self.align_corners = align_corners | |
self.groups = 1 | |
self.expand = expand | |
out_features = features | |
if self.expand == True: | |
out_features = features // 2 | |
self.out_conv = nn.Conv2d( | |
features, | |
out_features, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=True, | |
groups=1, | |
) | |
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn) | |
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn) | |
self.skip_add = nn.quantized.FloatFunctional() | |
def forward(self, *xs): | |
"""Forward pass. | |
Returns: | |
tensor: output | |
""" | |
output = xs[0] | |
if len(xs) == 2: | |
res = self.resConfUnit1(xs[1]) | |
output = self.skip_add.add(output, res) | |
# output += res | |
output = self.resConfUnit2(output) | |
output = nn.functional.interpolate( | |
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners | |
) | |
output = self.out_conv(output) | |
return output | |