Spaces:
Sleeping
Sleeping
"""Compute segmentation maps for images in the input folder. | |
""" | |
import os | |
import glob | |
import cv2 | |
import argparse | |
import torch | |
import torch.nn.functional as F | |
import util.io | |
from torchvision.transforms import Compose | |
from dpt.models import DPTSegmentationModel | |
from dpt.transforms import Resize, NormalizeImage, PrepareForNet | |
def run(input_path, output_path, model_path, model_type="dpt_hybrid", optimize=True): | |
"""Run segmentation network | |
Args: | |
input_path (str): path to input folder | |
output_path (str): path to output folder | |
model_path (str): path to saved model | |
""" | |
print("initialize") | |
# select device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print("device: %s" % device) | |
net_w = net_h = 480 | |
# load network | |
if model_type == "dpt_large": | |
model = DPTSegmentationModel( | |
150, | |
path=model_path, | |
backbone="vitl16_384", | |
) | |
elif model_type == "dpt_hybrid": | |
model = DPTSegmentationModel( | |
150, | |
path=model_path, | |
backbone="vitb_rn50_384", | |
) | |
else: | |
assert ( | |
False | |
), f"model_type '{model_type}' not implemented, use: --model_type [dpt_large|dpt_hybrid]" | |
transform = Compose( | |
[ | |
Resize( | |
net_w, | |
net_h, | |
resize_target=None, | |
keep_aspect_ratio=True, | |
ensure_multiple_of=32, | |
resize_method="minimal", | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), | |
PrepareForNet(), | |
] | |
) | |
model.eval() | |
if optimize == True and device == torch.device("cuda"): | |
model = model.to(memory_format=torch.channels_last) | |
model = model.half() | |
model.to(device) | |
# get input | |
img_names = glob.glob(os.path.join(input_path, "*")) | |
num_images = len(img_names) | |
# create output folder | |
os.makedirs(output_path, exist_ok=True) | |
print("start processing") | |
for ind, img_name in enumerate(img_names): | |
print(" processing {} ({}/{})".format(img_name, ind + 1, num_images)) | |
# input | |
img = util.io.read_image(img_name) | |
img_input = transform({"image": img})["image"] | |
# compute | |
with torch.no_grad(): | |
sample = torch.from_numpy(img_input).to(device).unsqueeze(0) | |
if optimize == True and device == torch.device("cuda"): | |
sample = sample.to(memory_format=torch.channels_last) | |
sample = sample.half() | |
out = model.forward(sample) | |
prediction = torch.nn.functional.interpolate( | |
out, size=img.shape[:2], mode="bicubic", align_corners=False | |
) | |
prediction = torch.argmax(prediction, dim=1) + 1 | |
prediction = prediction.squeeze().cpu().numpy() | |
# output | |
filename = os.path.join( | |
output_path, os.path.splitext(os.path.basename(img_name))[0] | |
) | |
util.io.write_segm_img(filename, img, prediction, alpha=0.5) | |
print("finished") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"-i", "--input_path", default="input", help="folder with input images" | |
) | |
parser.add_argument( | |
"-o", "--output_path", default="output_semseg", help="folder for output images" | |
) | |
parser.add_argument( | |
"-m", | |
"--model_weights", | |
default=None, | |
help="path to the trained weights of model", | |
) | |
# 'vit_large', 'vit_hybrid' | |
parser.add_argument("-t", "--model_type", default="dpt_hybrid", help="model type") | |
parser.add_argument("--optimize", dest="optimize", action="store_true") | |
parser.add_argument("--no-optimize", dest="optimize", action="store_false") | |
parser.set_defaults(optimize=True) | |
args = parser.parse_args() | |
default_models = { | |
"dpt_large": "weights/dpt_large-ade20k-b12dca68.pt", | |
"dpt_hybrid": "weights/dpt_hybrid-ade20k-53898607.pt", | |
} | |
if args.model_weights is None: | |
args.model_weights = default_models[args.model_type] | |
# set torch options | |
torch.backends.cudnn.enabled = True | |
torch.backends.cudnn.benchmark = True | |
# compute segmentation maps | |
run( | |
args.input_path, | |
args.output_path, | |
args.model_weights, | |
args.model_type, | |
args.optimize, | |
) | |