Spaces:
Starting
on
Zero
Starting
on
Zero
import torch | |
from resampler import Resampler | |
from transformers import CLIPVisionModel | |
BATCH_SIZE = 2 | |
OUTPUT_DIM = 1280 | |
NUM_QUERIES = 8 | |
NUM_LATENTS_MEAN_POOLED = 4 # 0 for no mean pooling (previous behavior) | |
APPLY_POS_EMB = True # False for no positional embeddings (previous behavior) | |
IMAGE_ENCODER_NAME_OR_PATH = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" | |
def main(): | |
image_encoder = CLIPVisionModel.from_pretrained(IMAGE_ENCODER_NAME_OR_PATH) | |
embedding_dim = image_encoder.config.hidden_size | |
print(f"image_encoder hidden size: ", embedding_dim) | |
image_proj_model = Resampler( | |
dim=1024, | |
depth=2, | |
dim_head=64, | |
heads=16, | |
num_queries=NUM_QUERIES, | |
embedding_dim=embedding_dim, | |
output_dim=OUTPUT_DIM, | |
ff_mult=2, | |
max_seq_len=257, | |
apply_pos_emb=APPLY_POS_EMB, | |
num_latents_mean_pooled=NUM_LATENTS_MEAN_POOLED, | |
) | |
dummy_images = torch.randn(BATCH_SIZE, 3, 224, 224) | |
with torch.no_grad(): | |
image_embeds = image_encoder(dummy_images, output_hidden_states=True).hidden_states[-2] | |
print("image_embds shape: ", image_embeds.shape) | |
with torch.no_grad(): | |
ip_tokens = image_proj_model(image_embeds) | |
print("ip_tokens shape:", ip_tokens.shape) | |
assert ip_tokens.shape == (BATCH_SIZE, NUM_QUERIES + NUM_LATENTS_MEAN_POOLED, OUTPUT_DIM) | |
if __name__ == "__main__": | |
main() | |