Spaces:
Running
on
Zero
Running
on
Zero
import matplotlib.pyplot as plt | |
from dpt.vit import get_mean_attention_map | |
def visualize_attention(input, model, prediction, model_type): | |
input = (input + 1.0)/2.0 | |
attn1 = model.pretrained.attention["attn_1"] | |
attn2 = model.pretrained.attention["attn_2"] | |
attn3 = model.pretrained.attention["attn_3"] | |
attn4 = model.pretrained.attention["attn_4"] | |
plt.subplot(3,4,1), plt.imshow(input.squeeze().permute(1,2,0)), plt.title("Input", fontsize=8), plt.axis("off") | |
plt.subplot(3,4,2), plt.imshow(prediction), plt.set_cmap("inferno"), plt.title("Prediction", fontsize=8), plt.axis("off") | |
if model_type == "dpt_hybrid": | |
h = [3,6,9,12] | |
else: | |
h = [6,12,18,24] | |
# upper left | |
plt.subplot(345), | |
ax1 = plt.imshow(get_mean_attention_map(attn1, 1, input.shape)) | |
plt.ylabel("Upper left corner", fontsize=8) | |
plt.title(f"Layer {h[0]}", fontsize=8) | |
gc = plt.gca() | |
gc.axes.xaxis.set_ticklabels([]) | |
gc.axes.yaxis.set_ticklabels([]) | |
gc.axes.xaxis.set_ticks([]) | |
gc.axes.yaxis.set_ticks([]) | |
plt.subplot(346), | |
plt.imshow(get_mean_attention_map(attn2, 1, input.shape)) | |
plt.title(f"Layer {h[1]}", fontsize=8) | |
plt.axis("off"), | |
plt.subplot(347), | |
plt.imshow(get_mean_attention_map(attn3, 1, input.shape)) | |
plt.title(f"Layer {h[2]}", fontsize=8) | |
plt.axis("off"), | |
plt.subplot(348), | |
plt.imshow(get_mean_attention_map(attn4, 1, input.shape)) | |
plt.title(f"Layer {h[3]}", fontsize=8) | |
plt.axis("off"), | |
# lower right | |
plt.subplot(3,4,9), plt.imshow(get_mean_attention_map(attn1, -1, input.shape)) | |
plt.ylabel("Lower right corner", fontsize=8) | |
gc = plt.gca() | |
gc.axes.xaxis.set_ticklabels([]) | |
gc.axes.yaxis.set_ticklabels([]) | |
gc.axes.xaxis.set_ticks([]) | |
gc.axes.yaxis.set_ticks([]) | |
plt.subplot(3,4,10), plt.imshow(get_mean_attention_map(attn2, -1, input.shape)), plt.axis("off") | |
plt.subplot(3,4,11), plt.imshow(get_mean_attention_map(attn3, -1, input.shape)), plt.axis("off") | |
plt.subplot(3,4,12), plt.imshow(get_mean_attention_map(attn4, -1, input.shape)), plt.axis("off") | |
plt.tight_layout() | |
plt.show() | |