TIGER-audio-extraction / audio_train.py
fffiloni's picture
Migrated from GitHub
406f22d verified
import os
import sys
import torch
from torch import Tensor
import argparse
import json
import look2hear.datas
import look2hear.models
import look2hear.system
import look2hear.losses
import look2hear.metrics
import look2hear.utils
from look2hear.system import make_optimizer
from dataclasses import dataclass
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping, RichProgressBar
from pytorch_lightning.callbacks.progress.rich_progress import *
from rich.console import Console
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.loggers.wandb import WandbLogger
from pytorch_lightning.strategies.ddp import DDPStrategy
from rich import print, reconfigure
from collections.abc import MutableMapping
from look2hear.utils import print_only, MyRichProgressBar, RichProgressBarTheme
import warnings
warnings.filterwarnings("ignore")
import wandb
wandb.login()
parser = argparse.ArgumentParser()
parser.add_argument(
"--conf_dir",
default="local/conf.yml",
help="Full path to save best validation model",
)
def main(config):
print_only(
"Instantiating datamodule <{}>".format(config["datamodule"]["data_name"])
)
datamodule: object = getattr(look2hear.datas, config["datamodule"]["data_name"])(
**config["datamodule"]["data_config"]
)
datamodule.setup()
train_loader, val_loader, test_loader = datamodule.make_loader
# Define model and optimizer
print_only(
"Instantiating AudioNet <{}>".format(config["audionet"]["audionet_name"])
)
model = getattr(look2hear.models, config["audionet"]["audionet_name"])(
sample_rate=config["datamodule"]["data_config"]["sample_rate"],
**config["audionet"]["audionet_config"],
)
# import pdb; pdb.set_trace()
print_only("Instantiating Optimizer <{}>".format(config["optimizer"]["optim_name"]))
optimizer = make_optimizer(model.parameters(), **config["optimizer"])
# Define scheduler
scheduler = None
if config["scheduler"]["sche_name"]:
print_only(
"Instantiating Scheduler <{}>".format(config["scheduler"]["sche_name"])
)
if config["scheduler"]["sche_name"] != "DPTNetScheduler":
scheduler = getattr(torch.optim.lr_scheduler, config["scheduler"]["sche_name"])(
optimizer=optimizer, **config["scheduler"]["sche_config"]
)
else:
scheduler = {
"scheduler": getattr(look2hear.system.schedulers, config["scheduler"]["sche_name"])(
optimizer, len(train_loader) // config["datamodule"]["data_config"]["batch_size"], 64
),
"interval": "step",
}
# Just after instantiating, save the args. Easy loading in the future.
config["main_args"]["exp_dir"] = os.path.join(
os.getcwd(), "Experiments", "checkpoint", config["exp"]["exp_name"]
)
exp_dir = config["main_args"]["exp_dir"]
os.makedirs(exp_dir, exist_ok=True)
conf_path = os.path.join(exp_dir, "conf.yml")
with open(conf_path, "w") as outfile:
yaml.safe_dump(config, outfile)
# Define Loss function.
print_only(
"Instantiating Loss, Train <{}>, Val <{}>".format(
config["loss"]["train"]["sdr_type"], config["loss"]["val"]["sdr_type"]
)
)
loss_func = {
"train": getattr(look2hear.losses, config["loss"]["train"]["loss_func"])(
getattr(look2hear.losses, config["loss"]["train"]["sdr_type"]),
**config["loss"]["train"]["config"],
),
"val": getattr(look2hear.losses, config["loss"]["val"]["loss_func"])(
getattr(look2hear.losses, config["loss"]["val"]["sdr_type"]),
**config["loss"]["val"]["config"],
),
}
print_only("Instantiating System <{}>".format(config["training"]["system"]))
system = getattr(look2hear.system, config["training"]["system"])(
audio_model=model,
loss_func=loss_func,
optimizer=optimizer,
train_loader=train_loader,
val_loader=val_loader,
test_loader=test_loader,
scheduler=scheduler,
config=config,
)
# Define callbacks
print_only("Instantiating ModelCheckpoint")
callbacks = []
checkpoint_dir = os.path.join(exp_dir)
checkpoint = ModelCheckpoint(
checkpoint_dir,
filename="{epoch}",
monitor="val_loss/dataloader_idx_0",
mode="min",
save_top_k=5,
verbose=True,
save_last=True,
)
callbacks.append(checkpoint)
if config["training"]["early_stop"]:
print_only("Instantiating EarlyStopping")
callbacks.append(EarlyStopping(**config["training"]["early_stop"]))
callbacks.append(MyRichProgressBar(theme=RichProgressBarTheme()))
# Don't ask GPU if they are not available.
gpus = config["training"]["gpus"] if torch.cuda.is_available() else None
distributed_backend = "cuda" if torch.cuda.is_available() else None
# default logger used by trainer
logger_dir = os.path.join(os.getcwd(), "Experiments", "tensorboard_logs")
os.makedirs(os.path.join(logger_dir, config["exp"]["exp_name"]), exist_ok=True)
# comet_logger = TensorBoardLogger(logger_dir, name=config["exp"]["exp_name"])
comet_logger = WandbLogger(
name=config["exp"]["exp_name"],
save_dir=os.path.join(logger_dir, config["exp"]["exp_name"]),
project="Real-work-dataset",
# offline=True
)
trainer = pl.Trainer(
max_epochs=config["training"]["epochs"],
callbacks=callbacks,
default_root_dir=exp_dir,
devices=gpus,
accelerator=distributed_backend,
strategy=DDPStrategy(find_unused_parameters=True),
limit_train_batches=1.0, # Useful for fast experiment
gradient_clip_val=5.0,
logger=comet_logger,
sync_batchnorm=True,
# precision="bf16-mixed",
# num_sanity_val_steps=0,
# sync_batchnorm=True,
# fast_dev_run=True,
)
trainer.fit(system)
print_only("Finished Training")
best_k = {k: v.item() for k, v in checkpoint.best_k_models.items()}
with open(os.path.join(exp_dir, "best_k_models.json"), "w") as f:
json.dump(best_k, f, indent=0)
state_dict = torch.load(checkpoint.best_model_path)
system.load_state_dict(state_dict=state_dict["state_dict"])
system.cpu()
to_save = system.audio_model.serialize()
torch.save(to_save, os.path.join(exp_dir, "best_model.pth"))
if __name__ == "__main__":
import yaml
from pprint import pprint
from look2hear.utils.parser_utils import (
prepare_parser_from_dict,
parse_args_as_dict,
)
args = parser.parse_args()
with open(args.conf_dir) as f:
def_conf = yaml.safe_load(f)
parser = prepare_parser_from_dict(def_conf, parser=parser)
arg_dic, plain_args = parse_args_as_dict(parser, return_plain_args=True)
# pprint(arg_dic)
main(arg_dic)