SkyReels-V2 / skycaptioner_v1 /scripts /vllm_struct_caption.py
fffiloni's picture
Migrated from GitHub
fc0a183 verified
import torch
import decord
import argparse
import pandas as pd
import numpy as np
from tqdm import tqdm
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer, AutoProcessor
from torch.utils.data import DataLoader
SYSTEM_PROMPT = "I need you to generate a structured and detailed caption for the provided video. The structured output and the requirements for each field are as shown in the following JSON content: {\"subjects\": [{\"appearance\": \"Main subject appearance description\", \"action\": \"Main subject action\", \"expression\": \"Main subject expression (Only for human/animal categories, empty otherwise)\", \"position\": \"Subject position in the video (Can be relative position to other objects or spatial description)\", \"TYPES\": {\"type\": \"Main category (e.g., Human)\", \"sub_type\": \"Sub-category (e.g., Man)\"}, \"is_main_subject\": true}, {\"appearance\": \"Non-main subject appearance description\", \"action\": \"Non-main subject action\", \"expression\": \"Non-main subject expression (Only for human/animal categories, empty otherwise)\", \"position\": \"Position of non-main subject 1\", \"TYPES\": {\"type\": \"Main category (e.g., Vehicles)\", \"sub_type\": \"Sub-category (e.g., Ship)\"}, \"is_main_subject\": false}], \"shot_type\": \"Shot type(Options: long_shot/full_shot/medium_shot/close_up/extreme_close_up/other)\", \"shot_angle\": \"Camera angle(Options: eye_level/high_angle/low_angle/other)\", \"shot_position\": \"Camera position(Options: front_view/back_view/side_view/over_the_shoulder/overhead_view/point_of_view/aerial_view/overlooking_view/other)\", \"camera_motion\": \"Camera movement description\", \"environment\": \"Video background/environment description\", \"lighting\": \"Lighting information in the video\"}"
class VideoTextDataset(torch.utils.data.Dataset):
def __init__(self, csv_path, model_path):
self.meta = pd.read_csv(csv_path)
self._path = 'path'
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.processor = AutoProcessor.from_pretrained(model_path)
def __getitem__(self, index):
row = self.meta.iloc[index]
path = row[self._path]
real_index = self.meta.index[index]
vr = decord.VideoReader(path, ctx=decord.cpu(0), width=360, height=420)
start = 0
end = len(vr)
# avg_fps = vr.get_avg_fps()
index = self.get_index(end-start, 16, st=start)
frames = vr.get_batch(index).asnumpy() # n h w c
video_inputs = [torch.from_numpy(frames).permute(0, 3, 1, 2)]
conversation = {
"role": "user",
"content": [
{
"type": "video",
"video": row['path'],
"max_pixels": 360 * 420, # 460800
"fps": 2.0,
},
{
"type": "text",
"text": SYSTEM_PROMPT
},
],
}
# η”Ÿζˆ user_input
user_input = self.processor.apply_chat_template(
[conversation],
tokenize=False,
add_generation_prompt=True
)
results = dict()
inputs = {
'prompt': user_input,
'multi_modal_data': {'video': video_inputs}
}
results["index"] = real_index
results['input'] = inputs
return results
def __len__(self):
return len(self.meta)
def get_index(self, video_size, num_frames, st=0):
seg_size = max(0., float(video_size - 1) / num_frames)
max_frame = int(video_size) - 1
seq = []
# index from 1, must add 1
for i in range(num_frames):
start = int(np.round(seg_size * i))
# end = int(np.round(seg_size * (i + 1)))
idx = min(start, max_frame)
seq.append(idx+st)
return seq
def result_writer(indices_list: list, result_list: list, meta: pd.DataFrame, column):
flat_indices = []
for x in zip(indices_list):
flat_indices.extend(x)
flat_results = []
for x in zip(result_list):
flat_results.extend(x)
flat_indices = np.array(flat_indices)
flat_results = np.array(flat_results)
unique_indices, unique_indices_idx = np.unique(flat_indices, return_index=True)
meta.loc[unique_indices, column[0]] = flat_results[unique_indices_idx]
meta = meta.loc[unique_indices]
return meta
def worker_init_fn(worker_id):
# Set different seed for each worker
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
# Prevent deadlocks by setting timeout
torch.set_num_threads(1)
def main():
parser = argparse.ArgumentParser(description="SkyCaptioner-V1 vllm batch inference")
parser.add_argument("--input_csv", default="./examples/test.csv")
parser.add_argument("--out_csv", default="./examples/test_result.csv")
parser.add_argument("--bs", type=int, default=4)
parser.add_argument("--tp", type=int, default=1)
parser.add_argument("--model_path", required=True, type=str, help="skycaptioner-v1 model path")
args = parser.parse_args()
dataset = VideoTextDataset(csv_path=args.input_csv, model_path=args.model_path)
dataloader = DataLoader(
dataset,
batch_size=args.bs,
num_workers=4,
worker_init_fn=worker_init_fn,
persistent_workers=True,
timeout=180,
)
sampling_params = SamplingParams(temperature=0.05, max_tokens=2048)
llm = LLM(model=args.model_path,
gpu_memory_utilization=0.6,
max_model_len=31920,
tensor_parallel_size=args.tp)
indices_list = []
caption_save = []
for video_batch in tqdm(dataloader):
indices = video_batch["index"]
inputs = video_batch["input"]
batch_user_inputs = []
for prompt, video in zip(inputs['prompt'], inputs['multi_modal_data']['video'][0]):
usi={'prompt':prompt, 'multi_modal_data':{'video':video}}
batch_user_inputs.append(usi)
outputs = llm.generate(batch_user_inputs, sampling_params, use_tqdm=False)
struct_outputs = [output.outputs[0].text for output in outputs]
indices_list.extend(indices.tolist())
caption_save.extend(struct_outputs)
meta_new = result_writer(indices_list, caption_save, dataset.meta, column=["structural_caption"])
meta_new.to_csv(args.out_csv, index=False)
print(f'Saved structural_caption to {args.out_csv}')
if __name__ == '__main__':
main()