Spaces:
Starting
on
T4
Starting
on
T4
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the sav_dataset directory of this source tree. | |
import json | |
import os | |
from typing import Dict, List, Optional, Tuple | |
import cv2 | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import pycocotools.mask as mask_util | |
def decode_video(video_path: str) -> List[np.ndarray]: | |
""" | |
Decode the video and return the RGB frames | |
""" | |
video = cv2.VideoCapture(video_path) | |
video_frames = [] | |
while video.isOpened(): | |
ret, frame = video.read() | |
if ret: | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
video_frames.append(frame) | |
else: | |
break | |
return video_frames | |
def show_anns(masks, colors: List, borders=True) -> None: | |
""" | |
show the annotations | |
""" | |
# return if no masks | |
if len(masks) == 0: | |
return | |
# sort masks by size | |
sorted_annot_and_color = sorted( | |
zip(masks, colors), key=(lambda x: x[0].sum()), reverse=True | |
) | |
H, W = sorted_annot_and_color[0][0].shape[0], sorted_annot_and_color[0][0].shape[1] | |
canvas = np.ones((H, W, 4)) | |
canvas[:, :, 3] = 0 # set the alpha channel | |
contour_thickness = max(1, int(min(5, 0.01 * min(H, W)))) | |
for mask, color in sorted_annot_and_color: | |
canvas[mask] = np.concatenate([color, [0.55]]) | |
if borders: | |
contours, _ = cv2.findContours( | |
np.array(mask, dtype=np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE | |
) | |
cv2.drawContours( | |
canvas, contours, -1, (0.05, 0.05, 0.05, 1), thickness=contour_thickness | |
) | |
ax = plt.gca() | |
ax.imshow(canvas) | |
class SAVDataset: | |
""" | |
SAVDataset is a class to load the SAV dataset and visualize the annotations. | |
""" | |
def __init__(self, sav_dir, annot_sample_rate=4): | |
""" | |
Args: | |
sav_dir: the directory of the SAV dataset | |
annot_sample_rate: the sampling rate of the annotations. | |
The annotations are aligned with the videos at 6 fps. | |
""" | |
self.sav_dir = sav_dir | |
self.annot_sample_rate = annot_sample_rate | |
self.manual_mask_colors = np.random.random((256, 3)) | |
self.auto_mask_colors = np.random.random((256, 3)) | |
def read_frames(self, mp4_path: str) -> None: | |
""" | |
Read the frames and downsample them to align with the annotations. | |
""" | |
if not os.path.exists(mp4_path): | |
print(f"{mp4_path} doesn't exist.") | |
return None | |
else: | |
# decode the video | |
frames = decode_video(mp4_path) | |
print(f"There are {len(frames)} frames decoded from {mp4_path} (24fps).") | |
# downsample the frames to align with the annotations | |
frames = frames[:: self.annot_sample_rate] | |
print( | |
f"Videos are annotated every {self.annot_sample_rate} frames. " | |
"To align with the annotations, " | |
f"downsample the video to {len(frames)} frames." | |
) | |
return frames | |
def get_frames_and_annotations( | |
self, video_id: str | |
) -> Tuple[List | None, Dict | None, Dict | None]: | |
""" | |
Get the frames and annotations for video. | |
""" | |
# load the video | |
mp4_path = os.path.join(self.sav_dir, video_id + ".mp4") | |
frames = self.read_frames(mp4_path) | |
if frames is None: | |
return None, None, None | |
# load the manual annotations | |
manual_annot_path = os.path.join(self.sav_dir, video_id + "_manual.json") | |
if not os.path.exists(manual_annot_path): | |
print(f"{manual_annot_path} doesn't exist. Something might be wrong.") | |
manual_annot = None | |
else: | |
manual_annot = json.load(open(manual_annot_path)) | |
# load the manual annotations | |
auto_annot_path = os.path.join(self.sav_dir, video_id + "_auto.json") | |
if not os.path.exists(auto_annot_path): | |
print(f"{auto_annot_path} doesn't exist.") | |
auto_annot = None | |
else: | |
auto_annot = json.load(open(auto_annot_path)) | |
return frames, manual_annot, auto_annot | |
def visualize_annotation( | |
self, | |
frames: List[np.ndarray], | |
auto_annot: Optional[Dict], | |
manual_annot: Optional[Dict], | |
annotated_frame_id: int, | |
show_auto=True, | |
show_manual=True, | |
) -> None: | |
""" | |
Visualize the annotations on the annotated_frame_id. | |
If show_manual is True, show the manual annotations. | |
If show_auto is True, show the auto annotations. | |
By default, show both auto and manual annotations. | |
""" | |
if annotated_frame_id >= len(frames): | |
print("invalid annotated_frame_id") | |
return | |
rles = [] | |
colors = [] | |
if show_manual and manual_annot is not None: | |
rles.extend(manual_annot["masklet"][annotated_frame_id]) | |
colors.extend( | |
self.manual_mask_colors[ | |
: len(manual_annot["masklet"][annotated_frame_id]) | |
] | |
) | |
if show_auto and auto_annot is not None: | |
rles.extend(auto_annot["masklet"][annotated_frame_id]) | |
colors.extend( | |
self.auto_mask_colors[: len(auto_annot["masklet"][annotated_frame_id])] | |
) | |
plt.imshow(frames[annotated_frame_id]) | |
if len(rles) > 0: | |
masks = [mask_util.decode(rle) > 0 for rle in rles] | |
show_anns(masks, colors) | |
else: | |
print("No annotation will be shown") | |
plt.axis("off") | |
plt.show() | |