SAM2-Image-Predictor / sam2 /csrc /connected_components.cu
fffiloni's picture
Upload 158 files
dfd72c0 verified
raw
history blame
7.81 kB
// Copyright (c) Meta Platforms, Inc. and affiliates.
// All rights reserved.
// This source code is licensed under the license found in the
// LICENSE file in the root directory of this source tree.
// adapted from https://github.com/zsef123/Connected_components_PyTorch
// with license found in the LICENSE_cctorch file in the root directory.
#include <ATen/cuda/CUDAContext.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <torch/extension.h>
#include <torch/script.h>
#include <vector>
// 2d
#define BLOCK_ROWS 16
#define BLOCK_COLS 16
namespace cc2d {
template <typename T>
__device__ __forceinline__ unsigned char hasBit(T bitmap, unsigned char pos) {
return (bitmap >> pos) & 1;
}
__device__ int32_t find(const int32_t* s_buf, int32_t n) {
while (s_buf[n] != n)
n = s_buf[n];
return n;
}
__device__ int32_t find_n_compress(int32_t* s_buf, int32_t n) {
const int32_t id = n;
while (s_buf[n] != n) {
n = s_buf[n];
s_buf[id] = n;
}
return n;
}
__device__ void union_(int32_t* s_buf, int32_t a, int32_t b) {
bool done;
do {
a = find(s_buf, a);
b = find(s_buf, b);
if (a < b) {
int32_t old = atomicMin(s_buf + b, a);
done = (old == b);
b = old;
} else if (b < a) {
int32_t old = atomicMin(s_buf + a, b);
done = (old == a);
a = old;
} else
done = true;
} while (!done);
}
__global__ void
init_labeling(int32_t* label, const uint32_t W, const uint32_t H) {
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
const uint32_t idx = row * W + col;
if (row < H && col < W)
label[idx] = idx;
}
__global__ void
merge(uint8_t* img, int32_t* label, const uint32_t W, const uint32_t H) {
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
const uint32_t idx = row * W + col;
if (row >= H || col >= W)
return;
uint32_t P = 0;
if (img[idx])
P |= 0x777;
if (row + 1 < H && img[idx + W])
P |= 0x777 << 4;
if (col + 1 < W && img[idx + 1])
P |= 0x777 << 1;
if (col == 0)
P &= 0xEEEE;
if (col + 1 >= W)
P &= 0x3333;
else if (col + 2 >= W)
P &= 0x7777;
if (row == 0)
P &= 0xFFF0;
if (row + 1 >= H)
P &= 0xFF;
if (P > 0) {
// If need check about top-left pixel(if flag the first bit) and hit the
// top-left pixel
if (hasBit(P, 0) && img[idx - W - 1]) {
union_(label, idx, idx - 2 * W - 2); // top left block
}
if ((hasBit(P, 1) && img[idx - W]) || (hasBit(P, 2) && img[idx - W + 1]))
union_(label, idx, idx - 2 * W); // top bottom block
if (hasBit(P, 3) && img[idx + 2 - W])
union_(label, idx, idx - 2 * W + 2); // top right block
if ((hasBit(P, 4) && img[idx - 1]) || (hasBit(P, 8) && img[idx + W - 1]))
union_(label, idx, idx - 2); // just left block
}
}
__global__ void compression(int32_t* label, const int32_t W, const int32_t H) {
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
const uint32_t idx = row * W + col;
if (row < H && col < W)
find_n_compress(label, idx);
}
__global__ void final_labeling(
const uint8_t* img,
int32_t* label,
const int32_t W,
const int32_t H) {
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
const uint32_t idx = row * W + col;
if (row >= H || col >= W)
return;
int32_t y = label[idx] + 1;
if (img[idx])
label[idx] = y;
else
label[idx] = 0;
if (col + 1 < W) {
if (img[idx + 1])
label[idx + 1] = y;
else
label[idx + 1] = 0;
if (row + 1 < H) {
if (img[idx + W + 1])
label[idx + W + 1] = y;
else
label[idx + W + 1] = 0;
}
}
if (row + 1 < H) {
if (img[idx + W])
label[idx + W] = y;
else
label[idx + W] = 0;
}
}
__global__ void init_counting(
const int32_t* label,
int32_t* count_init,
const int32_t W,
const int32_t H) {
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
const uint32_t idx = row * W + col;
if (row >= H || col >= W)
return;
int32_t y = label[idx];
if (y > 0) {
int32_t count_idx = y - 1;
atomicAdd(count_init + count_idx, 1);
}
}
__global__ void final_counting(
const int32_t* label,
const int32_t* count_init,
int32_t* count_final,
const int32_t W,
const int32_t H) {
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
const uint32_t idx = row * W + col;
if (row >= H || col >= W)
return;
int32_t y = label[idx];
if (y > 0) {
int32_t count_idx = y - 1;
count_final[idx] = count_init[count_idx];
} else {
count_final[idx] = 0;
}
}
} // namespace cc2d
std::vector<torch::Tensor> get_connected_componnets(
const torch::Tensor& inputs) {
AT_ASSERTM(inputs.is_cuda(), "inputs must be a CUDA tensor");
AT_ASSERTM(inputs.ndimension() == 4, "inputs must be [N, 1, H, W] shape");
AT_ASSERTM(
inputs.scalar_type() == torch::kUInt8, "inputs must be a uint8 type");
const uint32_t N = inputs.size(0);
const uint32_t C = inputs.size(1);
const uint32_t H = inputs.size(2);
const uint32_t W = inputs.size(3);
AT_ASSERTM(C == 1, "inputs must be [N, 1, H, W] shape");
AT_ASSERTM((H % 2) == 0, "height must be an even number");
AT_ASSERTM((W % 2) == 0, "width must be an even number");
// label must be uint32_t
auto label_options =
torch::TensorOptions().dtype(torch::kInt32).device(inputs.device());
torch::Tensor labels = torch::zeros({N, C, H, W}, label_options);
torch::Tensor counts_init = torch::zeros({N, C, H, W}, label_options);
torch::Tensor counts_final = torch::zeros({N, C, H, W}, label_options);
dim3 grid = dim3(
((W + 1) / 2 + BLOCK_COLS - 1) / BLOCK_COLS,
((H + 1) / 2 + BLOCK_ROWS - 1) / BLOCK_ROWS);
dim3 block = dim3(BLOCK_COLS, BLOCK_ROWS);
dim3 grid_count =
dim3((W + BLOCK_COLS) / BLOCK_COLS, (H + BLOCK_ROWS) / BLOCK_ROWS);
dim3 block_count = dim3(BLOCK_COLS, BLOCK_ROWS);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
for (int n = 0; n < N; n++) {
uint32_t offset = n * H * W;
cc2d::init_labeling<<<grid, block, 0, stream>>>(
labels.data_ptr<int32_t>() + offset, W, H);
cc2d::merge<<<grid, block, 0, stream>>>(
inputs.data_ptr<uint8_t>() + offset,
labels.data_ptr<int32_t>() + offset,
W,
H);
cc2d::compression<<<grid, block, 0, stream>>>(
labels.data_ptr<int32_t>() + offset, W, H);
cc2d::final_labeling<<<grid, block, 0, stream>>>(
inputs.data_ptr<uint8_t>() + offset,
labels.data_ptr<int32_t>() + offset,
W,
H);
// get the counting of each pixel
cc2d::init_counting<<<grid_count, block_count, 0, stream>>>(
labels.data_ptr<int32_t>() + offset,
counts_init.data_ptr<int32_t>() + offset,
W,
H);
cc2d::final_counting<<<grid_count, block_count, 0, stream>>>(
labels.data_ptr<int32_t>() + offset,
counts_init.data_ptr<int32_t>() + offset,
counts_final.data_ptr<int32_t>() + offset,
W,
H);
}
// returned values are [labels, counts]
std::vector<torch::Tensor> outputs;
outputs.push_back(labels);
outputs.push_back(counts_final);
return outputs;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def(
"get_connected_componnets",
&get_connected_componnets,
"get_connected_componnets");
}