Spaces:
Running
on
T4
Running
on
T4
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.distributed | |
import torch.nn.functional as F | |
from torch.nn.init import trunc_normal_ | |
from sam2.modeling.sam.mask_decoder import MaskDecoder | |
from sam2.modeling.sam.prompt_encoder import PromptEncoder | |
from sam2.modeling.sam.transformer import TwoWayTransformer | |
from sam2.modeling.sam2_utils import get_1d_sine_pe, MLP, select_closest_cond_frames | |
# a large negative value as a placeholder score for missing objects | |
NO_OBJ_SCORE = -1024.0 | |
class SAM2Base(torch.nn.Module): | |
def __init__( | |
self, | |
image_encoder, | |
memory_attention, | |
memory_encoder, | |
num_maskmem=7, # default 1 input frame + 6 previous frames | |
image_size=512, | |
backbone_stride=16, # stride of the image backbone output | |
sigmoid_scale_for_mem_enc=1.0, # scale factor for mask sigmoid prob | |
sigmoid_bias_for_mem_enc=0.0, # bias factor for mask sigmoid prob | |
# During evaluation, whether to binarize the sigmoid mask logits on interacted frames with clicks | |
binarize_mask_from_pts_for_mem_enc=False, | |
use_mask_input_as_output_without_sam=False, # on frames with mask input, whether to directly output the input mask without using a SAM prompt encoder + mask decoder | |
# The maximum number of conditioning frames to participate in the memory attention (-1 means no limit; if there are more conditioning frames than this limit, | |
# we only cross-attend to the temporally closest `max_cond_frames_in_attn` conditioning frames in the encoder when tracking each frame). This gives the model | |
# a temporal locality when handling a large number of annotated frames (since closer frames should be more important) and also avoids GPU OOM. | |
max_cond_frames_in_attn=-1, | |
# on the first frame, whether to directly add the no-memory embedding to the image feature | |
# (instead of using the transformer encoder) | |
directly_add_no_mem_embed=False, | |
# whether to use high-resolution feature maps in the SAM mask decoder | |
use_high_res_features_in_sam=False, | |
# whether to output multiple (3) masks for the first click on initial conditioning frames | |
multimask_output_in_sam=False, | |
# the minimum and maximum number of clicks to use multimask_output_in_sam (only relevant when `multimask_output_in_sam=True`; | |
# default is 1 for both, meaning that only the first click gives multimask output; also note that a box counts as two points) | |
multimask_min_pt_num=1, | |
multimask_max_pt_num=1, | |
# whether to also use multimask output for tracking (not just for the first click on initial conditioning frames; only relevant when `multimask_output_in_sam=True`) | |
multimask_output_for_tracking=False, | |
# Whether to use multimask tokens for obj ptr; Only relevant when both | |
# use_obj_ptrs_in_encoder=True and multimask_output_for_tracking=True | |
use_multimask_token_for_obj_ptr: bool = False, | |
# whether to use sigmoid to restrict ious prediction to [0-1] | |
iou_prediction_use_sigmoid=False, | |
# The memory bank's temporal stride during evaluation (i.e. the `r` parameter in XMem and Cutie; XMem and Cutie use r=5). | |
# For r>1, the (self.num_maskmem - 1) non-conditioning memory frames consist of | |
# (self.num_maskmem - 2) nearest frames from every r-th frames, plus the last frame. | |
memory_temporal_stride_for_eval=1, | |
# if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click | |
# if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames | |
add_all_frames_to_correct_as_cond=False, | |
# whether to apply non-overlapping constraints on the object masks in the memory encoder during evaluation (to avoid/alleviate superposing masks) | |
non_overlap_masks_for_mem_enc=False, | |
# whether to cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder | |
use_obj_ptrs_in_encoder=False, | |
# the maximum number of object pointers from other frames in encoder cross attention (only relevant when `use_obj_ptrs_in_encoder=True`) | |
max_obj_ptrs_in_encoder=16, | |
# whether to add temporal positional encoding to the object pointers in the encoder (only relevant when `use_obj_ptrs_in_encoder=True`) | |
add_tpos_enc_to_obj_ptrs=True, | |
# whether to add an extra linear projection layer for the temporal positional encoding in the object pointers to avoid potential interference | |
# with spatial positional encoding (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`) | |
proj_tpos_enc_in_obj_ptrs=False, | |
# whether to only attend to object pointers in the past (before the current frame) in the encoder during evaluation | |
# (only relevant when `use_obj_ptrs_in_encoder=True`; this might avoid pointer information too far in the future to distract the initial tracking) | |
only_obj_ptrs_in_the_past_for_eval=False, | |
# Whether to predict if there is an object in the frame | |
pred_obj_scores: bool = False, | |
# Whether to use an MLP to predict object scores | |
pred_obj_scores_mlp: bool = False, | |
# Only relevant if pred_obj_scores=True and use_obj_ptrs_in_encoder=True; | |
# Whether to have a fixed no obj pointer when there is no object present | |
# or to use it as an additive embedding with obj_ptr produced by decoder | |
fixed_no_obj_ptr: bool = False, | |
# Soft no object, i.e. mix in no_obj_ptr softly, | |
# hope to make recovery easier if there is a mistake and mitigate accumulation of errors | |
soft_no_obj_ptr: bool = False, | |
use_mlp_for_obj_ptr_proj: bool = False, | |
# extra arguments used to construct the SAM mask decoder; if not None, it should be a dict of kwargs to be passed into `MaskDecoder` class. | |
sam_mask_decoder_extra_args=None, | |
compile_image_encoder: bool = False, | |
): | |
super().__init__() | |
# Part 1: the image backbone | |
self.image_encoder = image_encoder | |
# Use level 0, 1, 2 for high-res setting, or just level 2 for the default setting | |
self.use_high_res_features_in_sam = use_high_res_features_in_sam | |
self.num_feature_levels = 3 if use_high_res_features_in_sam else 1 | |
self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder | |
self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder | |
if use_obj_ptrs_in_encoder: | |
# A conv layer to downsample the mask prompt to stride 4 (the same stride as | |
# low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale, | |
# so that it can be fed into the SAM mask decoder to generate a pointer. | |
self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4) | |
self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs | |
if proj_tpos_enc_in_obj_ptrs: | |
assert add_tpos_enc_to_obj_ptrs # these options need to be used together | |
self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs | |
self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval | |
# Part 2: memory attention to condition current frame's visual features | |
# with memories (and obj ptrs) from past frames | |
self.memory_attention = memory_attention | |
self.hidden_dim = memory_attention.d_model | |
# Part 3: memory encoder for the previous frame's outputs | |
self.memory_encoder = memory_encoder | |
self.mem_dim = self.hidden_dim | |
if hasattr(self.memory_encoder, "out_proj") and hasattr( | |
self.memory_encoder.out_proj, "weight" | |
): | |
# if there is compression of memories along channel dim | |
self.mem_dim = self.memory_encoder.out_proj.weight.shape[0] | |
self.num_maskmem = num_maskmem # Number of memories accessible | |
# Temporal encoding of the memories | |
self.maskmem_tpos_enc = torch.nn.Parameter( | |
torch.zeros(num_maskmem, 1, 1, self.mem_dim) | |
) | |
trunc_normal_(self.maskmem_tpos_enc, std=0.02) | |
# a single token to indicate no memory embedding from previous frames | |
self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim)) | |
self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim)) | |
trunc_normal_(self.no_mem_embed, std=0.02) | |
trunc_normal_(self.no_mem_pos_enc, std=0.02) | |
self.directly_add_no_mem_embed = directly_add_no_mem_embed | |
# Apply sigmoid to the output raw mask logits (to turn them from | |
# range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder | |
self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc | |
self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc | |
self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc | |
self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc | |
self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval | |
# On frames with mask input, whether to directly output the input mask without | |
# using a SAM prompt encoder + mask decoder | |
self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam | |
self.multimask_output_in_sam = multimask_output_in_sam | |
self.multimask_min_pt_num = multimask_min_pt_num | |
self.multimask_max_pt_num = multimask_max_pt_num | |
self.multimask_output_for_tracking = multimask_output_for_tracking | |
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr | |
self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid | |
# Part 4: SAM-style prompt encoder (for both mask and point inputs) | |
# and SAM-style mask decoder for the final mask output | |
self.image_size = image_size | |
self.backbone_stride = backbone_stride | |
self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args | |
self.pred_obj_scores = pred_obj_scores | |
self.pred_obj_scores_mlp = pred_obj_scores_mlp | |
self.fixed_no_obj_ptr = fixed_no_obj_ptr | |
self.soft_no_obj_ptr = soft_no_obj_ptr | |
if self.fixed_no_obj_ptr: | |
assert self.pred_obj_scores | |
assert self.use_obj_ptrs_in_encoder | |
if self.pred_obj_scores and self.use_obj_ptrs_in_encoder: | |
self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim)) | |
trunc_normal_(self.no_obj_ptr, std=0.02) | |
self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj | |
self._build_sam_heads() | |
self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond | |
self.max_cond_frames_in_attn = max_cond_frames_in_attn | |
# Model compilation | |
if compile_image_encoder: | |
# Compile the forward function (not the full module) to allow loading checkpoints. | |
print( | |
"Image encoder compilation is enabled. First forward pass will be slow." | |
) | |
self.image_encoder.forward = torch.compile( | |
self.image_encoder.forward, | |
mode="max-autotune", | |
fullgraph=True, | |
dynamic=False, | |
) | |
def device(self): | |
return next(self.parameters()).device | |
def forward(self, *args, **kwargs): | |
raise NotImplementedError( | |
"Please use the corresponding methods in SAM2VideoPredictor for inference." | |
"See notebooks/video_predictor_example.ipynb for an example." | |
) | |
def _build_sam_heads(self): | |
"""Build SAM-style prompt encoder and mask decoder.""" | |
self.sam_prompt_embed_dim = self.hidden_dim | |
self.sam_image_embedding_size = self.image_size // self.backbone_stride | |
# build PromptEncoder and MaskDecoder from SAM | |
# (their hyperparameters like `mask_in_chans=16` are from SAM code) | |
self.sam_prompt_encoder = PromptEncoder( | |
embed_dim=self.sam_prompt_embed_dim, | |
image_embedding_size=( | |
self.sam_image_embedding_size, | |
self.sam_image_embedding_size, | |
), | |
input_image_size=(self.image_size, self.image_size), | |
mask_in_chans=16, | |
) | |
self.sam_mask_decoder = MaskDecoder( | |
num_multimask_outputs=3, | |
transformer=TwoWayTransformer( | |
depth=2, | |
embedding_dim=self.sam_prompt_embed_dim, | |
mlp_dim=2048, | |
num_heads=8, | |
), | |
transformer_dim=self.sam_prompt_embed_dim, | |
iou_head_depth=3, | |
iou_head_hidden_dim=256, | |
use_high_res_features=self.use_high_res_features_in_sam, | |
iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid, | |
pred_obj_scores=self.pred_obj_scores, | |
pred_obj_scores_mlp=self.pred_obj_scores_mlp, | |
use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr, | |
**(self.sam_mask_decoder_extra_args or {}), | |
) | |
if self.use_obj_ptrs_in_encoder: | |
# a linear projection on SAM output tokens to turn them into object pointers | |
self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim) | |
if self.use_mlp_for_obj_ptr_proj: | |
self.obj_ptr_proj = MLP( | |
self.hidden_dim, self.hidden_dim, self.hidden_dim, 3 | |
) | |
else: | |
self.obj_ptr_proj = torch.nn.Identity() | |
if self.proj_tpos_enc_in_obj_ptrs: | |
# a linear projection on temporal positional encoding in object pointers to | |
# avoid potential interference with spatial positional encoding | |
self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim) | |
else: | |
self.obj_ptr_tpos_proj = torch.nn.Identity() | |
def _forward_sam_heads( | |
self, | |
backbone_features, | |
point_inputs=None, | |
mask_inputs=None, | |
high_res_features=None, | |
multimask_output=False, | |
): | |
""" | |
Forward SAM prompt encoders and mask heads. | |
Inputs: | |
- backbone_features: image features of [B, C, H, W] shape | |
- point_inputs: a dictionary with "point_coords" and "point_labels", where | |
1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the | |
absolute pixel-unit coordinate in (x, y) format of the P input points | |
2) "point_labels" has shape [B, P] and int32 dtype, where 1 means | |
positive clicks, 0 means negative clicks, and -1 means padding | |
- mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the | |
same spatial size as the image. | |
- high_res_features: either 1) None or 2) or a list of length 2 containing | |
two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively, | |
which will be used as high-resolution feature maps for SAM decoder. | |
- multimask_output: if it's True, we output 3 candidate masks and their 3 | |
corresponding IoU estimates, and if it's False, we output only 1 mask and | |
its corresponding IoU estimate. | |
Outputs: | |
- low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if | |
`multimask_output=True` and M = 1 if `multimask_output=False`), the SAM | |
output mask logits (before sigmoid) for the low-resolution masks, with 4x | |
the resolution (1/4 stride) of the input backbone_features. | |
- high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3 | |
if `multimask_output=True` and M = 1 if `multimask_output=False`), | |
upsampled from the low-resolution masks, with shape size as the image | |
(stride is 1 pixel). | |
- ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1 | |
if `multimask_output=False`), the estimated IoU of each output mask. | |
- low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`. | |
If `multimask_output=True`, it's the mask with the highest IoU estimate. | |
If `multimask_output=False`, it's the same as `low_res_multimasks`. | |
- high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`. | |
If `multimask_output=True`, it's the mask with the highest IoU estimate. | |
If `multimask_output=False`, it's the same as `high_res_multimasks`. | |
- obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted | |
based on the output token from the SAM mask decoder. | |
""" | |
B = backbone_features.size(0) | |
device = backbone_features.device | |
assert backbone_features.size(1) == self.sam_prompt_embed_dim | |
assert backbone_features.size(2) == self.sam_image_embedding_size | |
assert backbone_features.size(3) == self.sam_image_embedding_size | |
# a) Handle point prompts | |
if point_inputs is not None: | |
sam_point_coords = point_inputs["point_coords"] | |
sam_point_labels = point_inputs["point_labels"] | |
assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B | |
else: | |
# If no points are provide, pad with an empty point (with label -1) | |
sam_point_coords = torch.zeros(B, 1, 2, device=device) | |
sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device) | |
# b) Handle mask prompts | |
if mask_inputs is not None: | |
# If mask_inputs is provided, downsize it into low-res mask input if needed | |
# and feed it as a dense mask prompt into the SAM mask encoder | |
assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1) | |
if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size: | |
sam_mask_prompt = F.interpolate( | |
mask_inputs.float(), | |
size=self.sam_prompt_encoder.mask_input_size, | |
align_corners=False, | |
mode="bilinear", | |
antialias=True, # use antialias for downsampling | |
) | |
else: | |
sam_mask_prompt = mask_inputs | |
else: | |
# Otherwise, simply feed None (and SAM's prompt encoder will add | |
# a learned `no_mask_embed` to indicate no mask input in this case). | |
sam_mask_prompt = None | |
sparse_embeddings, dense_embeddings = self.sam_prompt_encoder( | |
points=(sam_point_coords, sam_point_labels), | |
boxes=None, | |
masks=sam_mask_prompt, | |
) | |
( | |
low_res_multimasks, | |
ious, | |
sam_output_tokens, | |
object_score_logits, | |
) = self.sam_mask_decoder( | |
image_embeddings=backbone_features, | |
image_pe=self.sam_prompt_encoder.get_dense_pe(), | |
sparse_prompt_embeddings=sparse_embeddings, | |
dense_prompt_embeddings=dense_embeddings, | |
multimask_output=multimask_output, | |
repeat_image=False, # the image is already batched | |
high_res_features=high_res_features, | |
) | |
if self.pred_obj_scores: | |
is_obj_appearing = object_score_logits > 0 | |
# Mask used for spatial memories is always a *hard* choice between obj and no obj, | |
# consistent with the actual mask prediction | |
low_res_multimasks = torch.where( | |
is_obj_appearing[:, None, None], | |
low_res_multimasks, | |
NO_OBJ_SCORE, | |
) | |
# convert masks from possibly bfloat16 (or float16) to float32 | |
# (older PyTorch versions before 2.1 don't support `interpolate` on bf16) | |
low_res_multimasks = low_res_multimasks.float() | |
high_res_multimasks = F.interpolate( | |
low_res_multimasks, | |
size=(self.image_size, self.image_size), | |
mode="bilinear", | |
align_corners=False, | |
) | |
sam_output_token = sam_output_tokens[:, 0] | |
if multimask_output: | |
# take the best mask prediction (with the highest IoU estimation) | |
best_iou_inds = torch.argmax(ious, dim=-1) | |
batch_inds = torch.arange(B, device=device) | |
low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) | |
high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) | |
if sam_output_tokens.size(1) > 1: | |
sam_output_token = sam_output_tokens[batch_inds, best_iou_inds] | |
else: | |
low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks | |
# Extract object pointer from the SAM output token (with occlusion handling) | |
obj_ptr = self.obj_ptr_proj(sam_output_token) | |
if self.pred_obj_scores: | |
# Allow *soft* no obj ptr, unlike for masks | |
if self.soft_no_obj_ptr: | |
# Only hard possible with gt | |
assert not self.teacher_force_obj_scores_for_mem | |
lambda_is_obj_appearing = object_score_logits.sigmoid() | |
else: | |
lambda_is_obj_appearing = is_obj_appearing.float() | |
if self.fixed_no_obj_ptr: | |
obj_ptr = lambda_is_obj_appearing * obj_ptr | |
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr | |
return ( | |
low_res_multimasks, | |
high_res_multimasks, | |
ious, | |
low_res_masks, | |
high_res_masks, | |
obj_ptr, | |
object_score_logits, | |
) | |
def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs): | |
""" | |
Directly turn binary `mask_inputs` into a output mask logits without using SAM. | |
(same input and output shapes as in _forward_sam_heads above). | |
""" | |
# Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid). | |
out_scale, out_bias = 20.0, -10.0 # sigmoid(-10.0)=4.5398e-05 | |
mask_inputs_float = mask_inputs.float() | |
high_res_masks = mask_inputs_float * out_scale + out_bias | |
low_res_masks = F.interpolate( | |
high_res_masks, | |
size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4), | |
align_corners=False, | |
mode="bilinear", | |
antialias=True, # use antialias for downsampling | |
) | |
# a dummy IoU prediction of all 1's under mask input | |
ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float() | |
if not self.use_obj_ptrs_in_encoder: | |
# all zeros as a dummy object pointer (of shape [B, C]) | |
obj_ptr = torch.zeros( | |
mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device | |
) | |
else: | |
# produce an object pointer using the SAM decoder from the mask input | |
_, _, _, _, _, obj_ptr, _ = self._forward_sam_heads( | |
backbone_features=backbone_features, | |
mask_inputs=self.mask_downsample(mask_inputs_float), | |
high_res_features=high_res_features, | |
) | |
# In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem; | |
# Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying | |
# on the object_scores from the SAM decoder. | |
is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1) | |
is_obj_appearing = is_obj_appearing[..., None] | |
lambda_is_obj_appearing = is_obj_appearing.float() | |
object_score_logits = out_scale * lambda_is_obj_appearing + out_bias | |
if self.pred_obj_scores: | |
if self.fixed_no_obj_ptr: | |
obj_ptr = lambda_is_obj_appearing * obj_ptr | |
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr | |
return ( | |
low_res_masks, | |
high_res_masks, | |
ious, | |
low_res_masks, | |
high_res_masks, | |
obj_ptr, | |
object_score_logits, | |
) | |
def forward_image(self, img_batch: torch.Tensor): | |
"""Get the image feature on the input batch.""" | |
backbone_out = self.image_encoder(img_batch) | |
if self.use_high_res_features_in_sam: | |
# precompute projected level 0 and level 1 features in SAM decoder | |
# to avoid running it again on every SAM click | |
backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0( | |
backbone_out["backbone_fpn"][0] | |
) | |
backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1( | |
backbone_out["backbone_fpn"][1] | |
) | |
return backbone_out | |
def _prepare_backbone_features(self, backbone_out): | |
"""Prepare and flatten visual features.""" | |
backbone_out = backbone_out.copy() | |
assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"]) | |
assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels | |
feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :] | |
vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :] | |
feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds] | |
# flatten NxCxHxW to HWxNxC | |
vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps] | |
vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds] | |
return backbone_out, vision_feats, vision_pos_embeds, feat_sizes | |
def _prepare_memory_conditioned_features( | |
self, | |
frame_idx, | |
is_init_cond_frame, | |
current_vision_feats, | |
current_vision_pos_embeds, | |
feat_sizes, | |
output_dict, | |
num_frames, | |
track_in_reverse=False, # tracking in reverse time order (for demo usage) | |
): | |
"""Fuse the current frame's visual feature map with previous memory.""" | |
B = current_vision_feats[-1].size(1) # batch size on this frame | |
C = self.hidden_dim | |
H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size | |
device = current_vision_feats[-1].device | |
# The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images. | |
# In this case, we skip the fusion with any memory. | |
if self.num_maskmem == 0: # Disable memory and skip fusion | |
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W) | |
return pix_feat | |
num_obj_ptr_tokens = 0 | |
# Step 1: condition the visual features of the current frame on previous memories | |
if not is_init_cond_frame: | |
# Retrieve the memories encoded with the maskmem backbone | |
to_cat_memory, to_cat_memory_pos_embed = [], [] | |
# Add conditioning frames's output first (all cond frames have t_pos=0 for | |
# when getting temporal positional embedding below) | |
assert len(output_dict["cond_frame_outputs"]) > 0 | |
# Select a maximum number of temporally closest cond frames for cross attention | |
cond_outputs = output_dict["cond_frame_outputs"] | |
selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames( | |
frame_idx, cond_outputs, self.max_cond_frames_in_attn | |
) | |
t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()] | |
# Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory | |
# the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1 | |
# We also allow taking the memory frame non-consecutively (with r>1), in which case | |
# we take (self.num_maskmem - 2) frames among every r-th frames plus the last frame. | |
r = self.memory_temporal_stride_for_eval | |
for t_pos in range(1, self.num_maskmem): | |
t_rel = self.num_maskmem - t_pos # how many frames before current frame | |
if t_rel == 1: | |
# for t_rel == 1, we take the last frame (regardless of r) | |
if not track_in_reverse: | |
# the frame immediately before this frame (i.e. frame_idx - 1) | |
prev_frame_idx = frame_idx - t_rel | |
else: | |
# the frame immediately after this frame (i.e. frame_idx + 1) | |
prev_frame_idx = frame_idx + t_rel | |
else: | |
# for t_rel >= 2, we take the memory frame from every r-th frames | |
if not track_in_reverse: | |
# first find the nearest frame among every r-th frames before this frame | |
# for r=1, this would be (frame_idx - 2) | |
prev_frame_idx = ((frame_idx - 2) // r) * r | |
# then seek further among every r-th frames | |
prev_frame_idx = prev_frame_idx - (t_rel - 2) * r | |
else: | |
# first find the nearest frame among every r-th frames after this frame | |
# for r=1, this would be (frame_idx + 2) | |
prev_frame_idx = -(-(frame_idx + 2) // r) * r | |
# then seek further among every r-th frames | |
prev_frame_idx = prev_frame_idx + (t_rel - 2) * r | |
out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None) | |
if out is None: | |
# If an unselected conditioning frame is among the last (self.num_maskmem - 1) | |
# frames, we still attend to it as if it's a non-conditioning frame. | |
out = unselected_cond_outputs.get(prev_frame_idx, None) | |
t_pos_and_prevs.append((t_pos, out)) | |
for t_pos, prev in t_pos_and_prevs: | |
if prev is None: | |
continue # skip padding frames | |
# "maskmem_features" might have been offloaded to CPU in demo use cases, | |
# so we load it back to GPU (it's a no-op if it's already on GPU). | |
feats = prev["maskmem_features"].cuda(non_blocking=True) | |
to_cat_memory.append(feats.flatten(2).permute(2, 0, 1)) | |
# Spatial positional encoding (it might have been offloaded to CPU in eval) | |
maskmem_enc = prev["maskmem_pos_enc"][-1].cuda() | |
maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1) | |
# Temporal positional encoding | |
maskmem_enc = ( | |
maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1] | |
) | |
to_cat_memory_pos_embed.append(maskmem_enc) | |
# Construct the list of past object pointers | |
if self.use_obj_ptrs_in_encoder: | |
max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder) | |
# First add those object pointers from selected conditioning frames | |
# (optionally, only include object pointers in the past during evaluation) | |
if not self.training and self.only_obj_ptrs_in_the_past_for_eval: | |
ptr_cond_outputs = { | |
t: out | |
for t, out in selected_cond_outputs.items() | |
if (t >= frame_idx if track_in_reverse else t <= frame_idx) | |
} | |
else: | |
ptr_cond_outputs = selected_cond_outputs | |
pos_and_ptrs = [ | |
# Temporal pos encoding contains how far away each pointer is from current frame | |
(abs(frame_idx - t), out["obj_ptr"]) | |
for t, out in ptr_cond_outputs.items() | |
] | |
# Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame | |
for t_diff in range(1, max_obj_ptrs_in_encoder): | |
t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff | |
if t < 0 or (num_frames is not None and t >= num_frames): | |
break | |
out = output_dict["non_cond_frame_outputs"].get( | |
t, unselected_cond_outputs.get(t, None) | |
) | |
if out is not None: | |
pos_and_ptrs.append((t_diff, out["obj_ptr"])) | |
# If we have at least one object pointer, add them to the across attention | |
if len(pos_and_ptrs) > 0: | |
pos_list, ptrs_list = zip(*pos_and_ptrs) | |
# stack object pointers along dim=0 into [ptr_seq_len, B, C] shape | |
obj_ptrs = torch.stack(ptrs_list, dim=0) | |
# a temporal positional embedding based on how far each object pointer is from | |
# the current frame (sine embedding normalized by the max pointer num). | |
if self.add_tpos_enc_to_obj_ptrs: | |
t_diff_max = max_obj_ptrs_in_encoder - 1 | |
tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim | |
obj_pos = torch.tensor(pos_list, device=device) | |
obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim) | |
obj_pos = self.obj_ptr_tpos_proj(obj_pos) | |
obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim) | |
else: | |
obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim) | |
if self.mem_dim < C: | |
# split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C | |
obj_ptrs = obj_ptrs.reshape( | |
-1, B, C // self.mem_dim, self.mem_dim | |
) | |
obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1) | |
obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0) | |
to_cat_memory.append(obj_ptrs) | |
to_cat_memory_pos_embed.append(obj_pos) | |
num_obj_ptr_tokens = obj_ptrs.shape[0] | |
else: | |
num_obj_ptr_tokens = 0 | |
else: | |
# for initial conditioning frames, encode them without using any previous memory | |
if self.directly_add_no_mem_embed: | |
# directly add no-mem embedding (instead of using the transformer encoder) | |
pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed | |
pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W) | |
return pix_feat_with_mem | |
# Use a dummy token on the first frame (to avoid emtpy memory input to tranformer encoder) | |
to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)] | |
to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)] | |
# Step 2: Concatenate the memories and forward through the transformer encoder | |
memory = torch.cat(to_cat_memory, dim=0) | |
memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0) | |
pix_feat_with_mem = self.memory_attention( | |
curr=current_vision_feats, | |
curr_pos=current_vision_pos_embeds, | |
memory=memory, | |
memory_pos=memory_pos_embed, | |
num_obj_ptr_tokens=num_obj_ptr_tokens, | |
) | |
# reshape the output (HW)BC => BCHW | |
pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W) | |
return pix_feat_with_mem | |
def _encode_new_memory( | |
self, | |
current_vision_feats, | |
feat_sizes, | |
pred_masks_high_res, | |
is_mask_from_pts, | |
): | |
"""Encode the current image and its prediction into a memory feature.""" | |
B = current_vision_feats[-1].size(1) # batch size on this frame | |
C = self.hidden_dim | |
H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size | |
# top-level feature, (HW)BC => BCHW | |
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W) | |
if self.non_overlap_masks_for_mem_enc and not self.training: | |
# optionally, apply non-overlapping constraints to the masks (it's applied | |
# in the batch dimension and should only be used during eval, where all | |
# the objects come from the same video under batch size 1). | |
pred_masks_high_res = self._apply_non_overlapping_constraints( | |
pred_masks_high_res | |
) | |
# scale the raw mask logits with a temperature before applying sigmoid | |
binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts | |
if binarize and not self.training: | |
mask_for_mem = (pred_masks_high_res > 0).float() | |
else: | |
# apply sigmoid on the raw mask logits to turn them into range (0, 1) | |
mask_for_mem = torch.sigmoid(pred_masks_high_res) | |
# apply scale and bias terms to the sigmoid probabilities | |
if self.sigmoid_scale_for_mem_enc != 1.0: | |
mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc | |
if self.sigmoid_bias_for_mem_enc != 0.0: | |
mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc | |
maskmem_out = self.memory_encoder( | |
pix_feat, mask_for_mem, skip_mask_sigmoid=True # sigmoid already applied | |
) | |
maskmem_features = maskmem_out["vision_features"] | |
maskmem_pos_enc = maskmem_out["vision_pos_enc"] | |
return maskmem_features, maskmem_pos_enc | |
def track_step( | |
self, | |
frame_idx, | |
is_init_cond_frame, | |
current_vision_feats, | |
current_vision_pos_embeds, | |
feat_sizes, | |
point_inputs, | |
mask_inputs, | |
output_dict, | |
num_frames, | |
track_in_reverse=False, # tracking in reverse time order (for demo usage) | |
# Whether to run the memory encoder on the predicted masks. Sometimes we might want | |
# to skip the memory encoder with `run_mem_encoder=False`. For example, | |
# in demo we might call `track_step` multiple times for each user click, | |
# and only encode the memory when the user finalizes their clicks. And in ablation | |
# settings like SAM training on static images, we don't need the memory encoder. | |
run_mem_encoder=True, | |
# The previously predicted SAM mask logits (which can be fed together with new clicks in demo). | |
prev_sam_mask_logits=None, | |
): | |
current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs} | |
# High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW | |
if len(current_vision_feats) > 1: | |
high_res_features = [ | |
x.permute(1, 2, 0).view(x.size(1), x.size(2), *s) | |
for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1]) | |
] | |
else: | |
high_res_features = None | |
if mask_inputs is not None and self.use_mask_input_as_output_without_sam: | |
# When use_mask_input_as_output_without_sam=True, we directly output the mask input | |
# (see it as a GT mask) without using a SAM prompt encoder + mask decoder. | |
pix_feat = current_vision_feats[-1].permute(1, 2, 0) | |
pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1]) | |
sam_outputs = self._use_mask_as_output( | |
pix_feat, high_res_features, mask_inputs | |
) | |
else: | |
# fused the visual feature with previous memory features in the memory bank | |
pix_feat_with_mem = self._prepare_memory_conditioned_features( | |
frame_idx=frame_idx, | |
is_init_cond_frame=is_init_cond_frame, | |
current_vision_feats=current_vision_feats[-1:], | |
current_vision_pos_embeds=current_vision_pos_embeds[-1:], | |
feat_sizes=feat_sizes[-1:], | |
output_dict=output_dict, | |
num_frames=num_frames, | |
track_in_reverse=track_in_reverse, | |
) | |
# apply SAM-style segmentation head | |
# here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder, | |
# e.g. in demo where such logits come from earlier interaction instead of correction sampling | |
# (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead) | |
if prev_sam_mask_logits is not None: | |
assert point_inputs is not None and mask_inputs is None | |
mask_inputs = prev_sam_mask_logits | |
multimask_output = self._use_multimask(is_init_cond_frame, point_inputs) | |
sam_outputs = self._forward_sam_heads( | |
backbone_features=pix_feat_with_mem, | |
point_inputs=point_inputs, | |
mask_inputs=mask_inputs, | |
high_res_features=high_res_features, | |
multimask_output=multimask_output, | |
) | |
( | |
_, | |
_, | |
_, | |
low_res_masks, | |
high_res_masks, | |
obj_ptr, | |
_, | |
) = sam_outputs | |
current_out["pred_masks"] = low_res_masks | |
current_out["pred_masks_high_res"] = high_res_masks | |
current_out["obj_ptr"] = obj_ptr | |
# Finally run the memory encoder on the predicted mask to encode | |
# it into a new memory feature (that can be used in future frames) | |
if run_mem_encoder and self.num_maskmem > 0: | |
high_res_masks_for_mem_enc = high_res_masks | |
maskmem_features, maskmem_pos_enc = self._encode_new_memory( | |
current_vision_feats=current_vision_feats, | |
feat_sizes=feat_sizes, | |
pred_masks_high_res=high_res_masks_for_mem_enc, | |
is_mask_from_pts=(point_inputs is not None), | |
) | |
current_out["maskmem_features"] = maskmem_features | |
current_out["maskmem_pos_enc"] = maskmem_pos_enc | |
else: | |
current_out["maskmem_features"] = None | |
current_out["maskmem_pos_enc"] = None | |
return current_out | |
def _use_multimask(self, is_init_cond_frame, point_inputs): | |
"""Whether to use multimask output in the SAM head.""" | |
num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1) | |
multimask_output = ( | |
self.multimask_output_in_sam | |
and (is_init_cond_frame or self.multimask_output_for_tracking) | |
and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num) | |
) | |
return multimask_output | |
def _apply_non_overlapping_constraints(self, pred_masks): | |
""" | |
Apply non-overlapping constraints to the object scores in pred_masks. Here we | |
keep only the highest scoring object at each spatial location in pred_masks. | |
""" | |
batch_size = pred_masks.size(0) | |
if batch_size == 1: | |
return pred_masks | |
device = pred_masks.device | |
# "max_obj_inds": object index of the object with the highest score at each location | |
max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True) | |
# "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks` | |
batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None] | |
keep = max_obj_inds == batch_obj_inds | |
# suppress overlapping regions' scores below -10.0 so that the foreground regions | |
# don't overlap (here sigmoid(-10.0)=4.5398e-05) | |
pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0)) | |
return pred_masks | |