Spaces:
Sleeping
Sleeping
import json | |
import logging | |
import os | |
import blobfile as bf | |
import torch | |
import gc | |
from datasets import load_dataset | |
from pytorch_lightning import seed_everything | |
from tqdm import tqdm | |
from arguments import parse_args | |
from models import get_model, get_multi_apply_fn | |
from rewards import get_reward_losses | |
from training import LatentNoiseTrainer, get_optimizer | |
def find_and_move_object_to_cpu(): | |
for obj in gc.get_objects(): | |
try: | |
# Check if the object is a PyTorch model | |
if isinstance(obj, torch.nn.Module): | |
# Check if any parameter of the model is on CUDA | |
if any(param.is_cuda for param in obj.parameters()): | |
print(f"Found PyTorch model on CUDA: {type(obj).__name__}") | |
# Move the model to CPU | |
obj.to('cpu') | |
print(f"Moved {type(obj).__name__} to CPU.") | |
# Optionally check if buffers are on CUDA | |
if any(buf.is_cuda for buf in obj.buffers()): | |
print(f"Found buffer on CUDA in {type(obj).__name__}") | |
obj.to('cpu') | |
print(f"Moved buffers of {type(obj).__name__} to CPU.") | |
except Exception as e: | |
# Handle any exceptions if obj is not a torch model | |
pass | |
def clear_gpu(): | |
"""Clear GPU memory by removing tensors, freeing cache, and moving data to CPU.""" | |
# List memory usage before clearing | |
print(f"Memory allocated before clearing: {torch.cuda.memory_allocated() / (1024 ** 2)} MB") | |
print(f"Memory reserved before clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB") | |
# Move any bound tensors back to CPU if needed | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.synchronize() # Ensure that all operations are completed | |
print("GPU memory cleared.") | |
print(f"Memory allocated after clearing: {torch.cuda.memory_allocated() / (1024 ** 2)} MB") | |
print(f"Memory reserved after clearing: {torch.cuda.memory_reserved() / (1024 ** 2)} MB") | |
def unload_previous_model_if_needed(loaded_model_setup): | |
# Check if any GPU memory is being used even when loaded_model_setup is None | |
if loaded_model_setup is None: | |
if torch.cuda.is_available() and torch.cuda.memory_allocated() > 0: | |
print("Unknown model or tensors are still loaded on the GPU. Clearing GPU memory.") | |
# Call the function to find and move object to CPU | |
find_and_move_object_to_cpu() | |
return | |
"""Unload the current model from the GPU and free resources if a new model is being loaded.""" | |
print("Unloading previous model from GPU to free memory.") | |
""" | |
previous_model = loaded_model_setup[7] # Assuming pipe is at position [7] in the setup | |
# If the model is 'hyper-sd', ensure its components are moved to CPU before deletion | |
if loaded_model_setup[0].model == "hyper-sd": | |
if previous_model.device == torch.device('cuda'): | |
if hasattr(previous_model, 'unet'): | |
print("Moving UNet back to CPU.") | |
previous_model.unet.to('cpu') # Move unet to CPU | |
print("Moving entire pipeline back to CPU.") | |
previous_model.to('cpu') # Move the entire pipeline (pipe) to CPU | |
# For other models, use a generic 'to' function if available | |
elif hasattr(previous_model, 'to') and loaded_model_setup[0].model != "flux": | |
if previous_model.device == torch.device('cuda'): | |
print("Moving previous model back to CPU.") | |
previous_model.to('cpu') # Move model to CPU to free GPU memory | |
# Delete the reference to the model to allow garbage collection | |
del previous_model | |
""" | |
# Call the function to find and move object to CPU | |
find_and_move_object_to_cpu() | |
# Clear GPU memory | |
clear_gpu() # Ensure that this function properly clears memory (e.g., torch.cuda.empty_cache()) | |
def setup(args, loaded_model_setup=None): | |
seed_everything(args.seed) | |
bf.makedirs(f"{args.save_dir}/logs/{args.task}") | |
# Set up logging and name settings | |
logger = logging.getLogger() | |
logger.handlers.clear() # Clear existing handlers | |
settings = ( | |
f"{args.model}{'_' + args.prompt if args.task == 't2i-compbench' else ''}" | |
f"{'_no-optim' if args.no_optim else ''}_{args.seed if args.task != 'geneval' else ''}" | |
f"_lr{args.lr}_gc{args.grad_clip}_iter{args.n_iters}" | |
f"_reg{args.reg_weight if args.enable_reg else '0'}" | |
f"{'_pickscore' + str(args.pickscore_weighting) if args.enable_pickscore else ''}" | |
f"{'_clip' + str(args.clip_weighting) if args.enable_clip else ''}" | |
f"{'_hps' + str(args.hps_weighting) if args.enable_hps else ''}" | |
f"{'_imagereward' + str(args.imagereward_weighting) if args.enable_imagereward else ''}" | |
f"{'_aesthetic' + str(args.aesthetic_weighting) if args.enable_aesthetic else ''}" | |
) | |
file_stream = open(f"{args.save_dir}/logs/{args.task}/{settings}.txt", "w") | |
handler = logging.StreamHandler(file_stream) | |
formatter = logging.Formatter("%(asctime)s - %(message)s") | |
handler.setFormatter(formatter) | |
logger.addHandler(handler) | |
logger.setLevel("INFO") | |
consoleHandler = logging.StreamHandler() | |
consoleHandler.setFormatter(formatter) | |
logger.addHandler(consoleHandler) | |
logging.info(args) | |
if args.device_id is not None: | |
logging.info(f"Using CUDA device {args.device_id}") | |
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | |
os.environ["CUDA_VISIBLE_DEVICES"] = args.device_id | |
device = torch.device("cuda") | |
dtype = torch.float16 if args.dtype == "float16" else torch.float32 | |
# If args.model is the same as the one in loaded_model_setup, reuse the trainer and pipe | |
if loaded_model_setup and args.model == loaded_model_setup[0].model: | |
print(f"Reusing model {args.model} from loaded setup.") | |
trainer = loaded_model_setup[1] # Trainer is at position 1 in loaded_model_setup | |
# Update trainer with the new arguments | |
trainer.n_iters = args.n_iters | |
trainer.n_inference_steps = args.n_inference_steps | |
trainer.seed = args.seed | |
trainer.save_all_images = args.save_all_images | |
trainer.no_optim = args.no_optim | |
trainer.regularize = args.enable_reg | |
trainer.regularization_weight = args.reg_weight | |
trainer.grad_clip = args.grad_clip | |
trainer.log_metrics = args.task == "single" or not args.no_optim | |
trainer.imageselect = args.imageselect | |
# Get latents (this step is still required) | |
if args.model == "flux": | |
shape = (1, 16 * 64, 64) | |
elif args.model != "pixart": | |
height = trainer.model.unet.config.sample_size * trainer.model.vae_scale_factor | |
width = trainer.model.unet.config.sample_size * trainer.model.vae_scale_factor | |
shape = ( | |
1, | |
trainer.model.unet.in_channels, | |
height // trainer.model.vae_scale_factor, | |
width // trainer.model.vae_scale_factor, | |
) | |
else: | |
height = trainer.model.transformer.config.sample_size * trainer.model.vae_scale_factor | |
width = trainer.model.transformer.config.sample_size * trainer.model.vae_scale_factor | |
shape = ( | |
1, | |
trainer.model.transformer.config.in_channels, | |
height // trainer.model.vae_scale_factor, | |
width // trainer.model.vae_scale_factor, | |
) | |
pipe = loaded_model_setup[7] | |
enable_grad = not args.no_optim | |
return args, trainer, device, dtype, shape, enable_grad, settings, pipe | |
# Unload previous model and clear GPU resources | |
unload_previous_model_if_needed(loaded_model_setup) | |
# Proceed with full model loading if args.model is different | |
print(f"Loading new model: {args.model}") | |
# Get reward losses | |
reward_losses = get_reward_losses(args, dtype, device, args.cache_dir) | |
# Get model and noise trainer | |
pipe = get_model( | |
args.model, dtype, device, args.cache_dir, args.memsave, args.cpu_offloading | |
) | |
# Final memory cleanup after model loading | |
torch.cuda.empty_cache() | |
trainer = LatentNoiseTrainer( | |
reward_losses=reward_losses, | |
model=pipe, | |
n_iters=args.n_iters, | |
n_inference_steps=args.n_inference_steps, | |
seed=args.seed, | |
save_all_images=args.save_all_images, | |
device=device if not args.cpu_offloading else 'cpu', # Use CPU if offloading is enabled | |
no_optim=args.no_optim, | |
regularize=args.enable_reg, | |
regularization_weight=args.reg_weight, | |
grad_clip=args.grad_clip, | |
log_metrics=args.task == "single" or not args.no_optim, | |
imageselect=args.imageselect, | |
) | |
# Create latents | |
if args.model == "flux": | |
shape = (1, 16 * 64, 64) | |
elif args.model != "pixart": | |
height = pipe.unet.config.sample_size * pipe.vae_scale_factor | |
width = pipe.unet.config.sample_size * pipe.vae_scale_factor | |
shape = ( | |
1, | |
pipe.unet.in_channels, | |
height // pipe.vae_scale_factor, | |
width // pipe.vae_scale_factor, | |
) | |
else: | |
height = pipe.transformer.config.sample_size * pipe.vae_scale_factor | |
width = pipe.transformer.config.sample_size * pipe.vae_scale_factor | |
shape = ( | |
1, | |
pipe.transformer.config.in_channels, | |
height // pipe.vae_scale_factor, | |
width // pipe.vae_scale_factor, | |
) | |
enable_grad = not args.no_optim | |
# Final memory cleanup | |
torch.cuda.empty_cache() # Free up cached memory | |
return args, trainer, device, dtype, shape, enable_grad, settings, pipe | |
def execute_task(args, trainer, device, dtype, shape, enable_grad, settings, pipe, progress_callback=None): | |
if args.task == "single": | |
# Attempt to move the model to GPU if model is not Flux | |
if args.model != "flux": | |
if args.model == "hyper-sd": | |
if pipe.device != torch.device('cuda'): | |
# Transfer UNet to GPU | |
pipe.unet = pipe.unet.to(device, dtype) | |
# Transfer the whole pipe to GPU, if required (optional) | |
pipe = pipe.to(device, dtype) | |
# upcast vae | |
pipe.vae = pipe.vae.to(dtype=torch.float32) | |
elif args.model == "pixart": | |
if pipe.device != torch.device('cuda'): | |
pipe.to(device) | |
else: | |
if pipe.device != torch.device('cuda'): | |
pipe.to(device, dtype) | |
else: | |
if args.cpu_offloading: | |
pipe.enable_sequential_cpu_offload() | |
if args.enable_multi_apply: | |
multi_apply_fn = get_multi_apply_fn( | |
model_type=args.multi_step_model, | |
seed=args.seed, | |
pipe=pipe, | |
cache_dir=args.cache_dir, | |
device=device if not args.cpu_offloading else 'cpu', | |
dtype=dtype, | |
) | |
else: | |
multi_apply_fn = None | |
torch.cuda.empty_cache() # Free up cached memory | |
print(f"PIPE:{pipe}") | |
init_latents = torch.randn(shape, device=device, dtype=dtype) | |
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad) | |
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov) | |
save_dir = f"{args.save_dir}/{args.task}/{settings}/{args.prompt[:150]}" | |
os.makedirs(f"{save_dir}", exist_ok=True) | |
init_image, best_image, total_init_rewards, total_best_rewards = trainer.train( | |
latents, args.prompt, optimizer, save_dir, multi_apply_fn, progress_callback=progress_callback | |
) | |
best_image.save(f"{save_dir}/best_image.png") | |
#init_image.save(f"{save_dir}/init_image.png") | |
# Move the pipe back to CPU | |
if args.model != "flux": | |
# Call the function to find and move object to CPU | |
find_and_move_object_to_cpu() | |
clear_gpu() | |
elif args.task == "example-prompts": | |
fo = open("assets/example_prompts.txt", "r") | |
prompts = fo.readlines() | |
fo.close() | |
for i, prompt in tqdm(enumerate(prompts)): | |
# Get new latents and optimizer | |
init_latents = torch.randn(shape, device=device, dtype=dtype) | |
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad) | |
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov) | |
prompt = prompt.strip() | |
name = f"{i:03d}_{prompt[:150]}.png" | |
save_dir = f"{args.save_dir}/{args.task}/{settings}/{name}" | |
os.makedirs(save_dir, exist_ok=True) | |
init_image, best_image, init_rewards, best_rewards = trainer.train( | |
latents, prompt, optimizer, save_dir, multi_apply_fn | |
) | |
if i == 0: | |
total_best_rewards = {k: 0.0 for k in best_rewards.keys()} | |
total_init_rewards = {k: 0.0 for k in best_rewards.keys()} | |
for k in best_rewards.keys(): | |
total_best_rewards[k] += best_rewards[k] | |
total_init_rewards[k] += init_rewards[k] | |
best_image.save(f"{save_dir}/best_image.png") | |
init_image.save(f"{save_dir}/init_image.png") | |
logging.info(f"Initial rewards: {init_rewards}") | |
logging.info(f"Best rewards: {best_rewards}") | |
for k in total_best_rewards.keys(): | |
total_best_rewards[k] /= len(prompts) | |
total_init_rewards[k] /= len(prompts) | |
# save results to directory | |
with open(f"{args.save_dir}/example-prompts/{settings}/results.txt", "w") as f: | |
f.write( | |
f"Mean initial all rewards: {total_init_rewards}\n" | |
f"Mean best all rewards: {total_best_rewards}\n" | |
) | |
elif args.task == "t2i-compbench": | |
prompt_list_file = f"../T2I-CompBench/examples/dataset/{args.prompt}.txt" | |
fo = open(prompt_list_file, "r") | |
prompts = fo.readlines() | |
fo.close() | |
os.makedirs(f"{args.save_dir}/{args.task}/{settings}/samples", exist_ok=True) | |
for i, prompt in tqdm(enumerate(prompts)): | |
# Get new latents and optimizer | |
init_latents = torch.randn(shape, device=device, dtype=dtype) | |
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad) | |
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov) | |
prompt = prompt.strip() | |
init_image, best_image, init_rewards, best_rewards = trainer.train( | |
latents, prompt, optimizer, None, multi_apply_fn | |
) | |
if i == 0: | |
total_best_rewards = {k: 0.0 for k in best_rewards.keys()} | |
total_init_rewards = {k: 0.0 for k in best_rewards.keys()} | |
for k in best_rewards.keys(): | |
total_best_rewards[k] += best_rewards[k] | |
total_init_rewards[k] += init_rewards[k] | |
name = f"{prompt}_{i:06d}.png" | |
best_image.save(f"{args.save_dir}/{args.task}/{settings}/samples/{name}") | |
logging.info(f"Initial rewards: {init_rewards}") | |
logging.info(f"Best rewards: {best_rewards}") | |
for k in total_best_rewards.keys(): | |
total_best_rewards[k] /= len(prompts) | |
total_init_rewards[k] /= len(prompts) | |
elif args.task == "parti-prompts": | |
parti_dataset = load_dataset("nateraw/parti-prompts", split="train") | |
total_reward_diff = 0.0 | |
total_best_reward = 0.0 | |
total_init_reward = 0.0 | |
total_improved_samples = 0 | |
for index, sample in enumerate(parti_dataset): | |
os.makedirs( | |
f"{args.save_dir}/{args.task}/{settings}/{index}", exist_ok=True | |
) | |
prompt = sample["Prompt"] | |
init_image, best_image, init_rewards, best_rewards = trainer.train( | |
latents, prompt, optimizer, multi_apply_fn | |
) | |
best_image.save( | |
f"{args.save_dir}/{args.task}/{settings}/{index}/best_image.png" | |
) | |
open( | |
f"{args.save_dir}/{args.task}/{settings}/{index}/prompt.txt", "w" | |
).write( | |
f"{prompt} \n Initial Rewards: {init_rewards} \n Best Rewards: {best_rewards}" | |
) | |
logging.info(f"Initial rewards: {init_rewards}") | |
logging.info(f"Best rewards: {best_rewards}") | |
initial_reward = init_rewards[args.benchmark_reward] | |
best_reward = best_rewards[args.benchmark_reward] | |
total_reward_diff += best_reward - initial_reward | |
total_best_reward += best_reward | |
total_init_reward += initial_reward | |
if best_reward < initial_reward: | |
total_improved_samples += 1 | |
if i == 0: | |
total_best_rewards = {k: 0.0 for k in best_rewards.keys()} | |
total_init_rewards = {k: 0.0 for k in best_rewards.keys()} | |
for k in best_rewards.keys(): | |
total_best_rewards[k] += best_rewards[k] | |
total_init_rewards[k] += init_rewards[k] | |
# Get new latents and optimizer | |
init_latents = torch.randn(shape, device=device, dtype=dtype) | |
latents = torch.nn.Parameter(init_latents, requires_grad=enable_grad) | |
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov) | |
improvement_percentage = total_improved_samples / parti_dataset.num_rows | |
mean_best_reward = total_best_reward / parti_dataset.num_rows | |
mean_init_reward = total_init_reward / parti_dataset.num_rows | |
mean_reward_diff = total_reward_diff / parti_dataset.num_rows | |
logging.info( | |
f"Improvement percentage: {improvement_percentage:.4f}, " | |
f"mean initial reward: {mean_init_reward:.4f}, " | |
f"mean best reward: {mean_best_reward:.4f}, " | |
f"mean reward diff: {mean_reward_diff:.4f}" | |
) | |
for k in total_best_rewards.keys(): | |
total_best_rewards[k] /= len(parti_dataset) | |
total_init_rewards[k] /= len(parti_dataset) | |
# save results | |
os.makedirs(f"{args.save_dir}/parti-prompts/{settings}", exist_ok=True) | |
with open(f"{args.save_dir}/parti-prompts/{settings}/results.txt", "w") as f: | |
f.write( | |
f"Mean improvement: {improvement_percentage:.4f}, " | |
f"mean initial reward: {mean_init_reward:.4f}, " | |
f"mean best reward: {mean_best_reward:.4f}, " | |
f"mean reward diff: {mean_reward_diff:.4f}\n" | |
f"Mean initial all rewards: {total_init_rewards}\n" | |
f"Mean best all rewards: {total_best_rewards}" | |
) | |
elif args.task == "geneval": | |
prompt_list_file = "../geneval/prompts/evaluation_metadata.jsonl" | |
with open(prompt_list_file) as fp: | |
metadatas = [json.loads(line) for line in fp] | |
outdir = f"{args.save_dir}/{args.task}/{settings}" | |
for index, metadata in enumerate(metadatas): | |
# Get new latents and optimizer | |
init_latents = torch.randn(shape, device=device, dtype=dtype) | |
latents = torch.nn.Parameter(init_latents, requires_grad=True) | |
optimizer = get_optimizer(args.optim, latents, args.lr, args.nesterov) | |
prompt = metadata["prompt"] | |
init_image, best_image, init_rewards, best_rewards = trainer.train( | |
latents, prompt, optimizer, None, multi_apply_fn | |
) | |
logging.info(f"Initial rewards: {init_rewards}") | |
logging.info(f"Best rewards: {best_rewards}") | |
outpath = f"{outdir}/{index:0>5}" | |
os.makedirs(f"{outpath}/samples", exist_ok=True) | |
with open(f"{outpath}/metadata.jsonl", "w") as fp: | |
json.dump(metadata, fp) | |
best_image.save(f"{outpath}/samples/{args.seed:05}.png") | |
if i == 0: | |
total_best_rewards = {k: 0.0 for k in best_rewards.keys()} | |
total_init_rewards = {k: 0.0 for k in best_rewards.keys()} | |
for k in best_rewards.keys(): | |
total_best_rewards[k] += best_rewards[k] | |
total_init_rewards[k] += init_rewards[k] | |
for k in total_best_rewards.keys(): | |
total_best_rewards[k] /= len(parti_dataset) | |
total_init_rewards[k] /= len(parti_dataset) | |
else: | |
raise ValueError(f"Unknown task {args.task}") | |
# log total rewards | |
logging.info(f"Mean initial rewards: {total_init_rewards}") | |
logging.info(f"Mean best rewards: {total_best_rewards}") | |
def main(): | |
args = parse_args() | |
args, trainer, device, dtype, shape, enable_grad, settings, pipe = setup(args, loaded_model_setup=None) | |
execute_task(args, trainer, device, dtype, shape, enable_grad, settings, pipe) | |
if __name__ == "__main__": | |
main() |