Spaces:
Starting
on
A100
Starting
on
A100
Update app.py
Browse files
app.py
CHANGED
@@ -272,48 +272,68 @@ def infer(ref_style_file, style_description, caption):
|
|
272 |
# Reset the state after inference, regardless of success or failure
|
273 |
reset_inference_state()
|
274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
def infer_compo(style_description, ref_style_file, caption, ref_sub_file):
|
276 |
-
global models_rbm, models_b
|
277 |
try:
|
278 |
caption = f"{caption} in {style_description}"
|
279 |
sam_prompt = f"{caption}"
|
280 |
use_sam_mask = False
|
281 |
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
|
286 |
batch_size = 1
|
287 |
height, width = 1024, 1024
|
288 |
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
|
289 |
|
290 |
-
extras.sampling_configs['cfg'] = 4
|
291 |
-
extras.sampling_configs['shift'] = 2
|
292 |
-
extras.sampling_configs['timesteps'] = 20
|
293 |
-
extras.sampling_configs['t_start'] = 1.0
|
294 |
-
extras_b.sampling_configs['cfg'] = 1.1
|
295 |
-
extras_b.sampling_configs['shift'] = 1
|
296 |
-
extras_b.sampling_configs['timesteps'] = 10
|
297 |
-
extras_b.sampling_configs['t_start'] = 1.0
|
298 |
-
|
299 |
ref_style = resize_image(PIL.Image.open(ref_style_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
|
300 |
ref_images = resize_image(PIL.Image.open(ref_sub_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
|
301 |
|
302 |
-
batch = {'captions': [caption] * batch_size}
|
303 |
-
batch['style'] = ref_style
|
304 |
-
batch['images'] = ref_images
|
305 |
|
306 |
-
x0_forward = models_rbm.effnet(extras.effnet_preprocess(ref_images
|
307 |
-
x0_style_forward = models_rbm.effnet(extras.effnet_preprocess(ref_style
|
308 |
|
309 |
## SAM Mask for sub
|
310 |
use_sam_mask = False
|
311 |
x0_preview = models_rbm.previewer(x0_forward)
|
312 |
sam_model = LangSAM()
|
|
|
313 |
|
314 |
-
|
315 |
-
x0_preview_pil = T.ToPILImage()(x0_preview[0])
|
316 |
-
x0_preview_tensor = T.ToTensor()(x0_preview_pil) # Convert PIL Image back to tensor
|
317 |
sam_mask, boxes, phrases, logits = sam_model.predict(x0_preview_pil, sam_prompt)
|
318 |
sam_mask = sam_mask.detach().unsqueeze(dim=0).to(device)
|
319 |
|
@@ -323,7 +343,6 @@ def infer_compo(style_description, ref_style_file, caption, ref_sub_file):
|
|
323 |
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
324 |
|
325 |
if low_vram:
|
326 |
-
# The sampling process uses more vram, so we offload everything except two modules to the cpu.
|
327 |
models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
|
328 |
models_to(sam_model, device="cpu")
|
329 |
models_to(sam_model.sam, device="cpu")
|
@@ -381,7 +400,7 @@ def infer_compo(style_description, ref_style_file, caption, ref_sub_file):
|
|
381 |
|
382 |
finally:
|
383 |
# Reset the state after inference, regardless of success or failure
|
384 |
-
|
385 |
|
386 |
import gradio as gr
|
387 |
|
|
|
272 |
# Reset the state after inference, regardless of success or failure
|
273 |
reset_inference_state()
|
274 |
|
275 |
+
def reset_compo_inference_state():
|
276 |
+
global models_rbm, models_b, extras, extras_b, device, core, core_b
|
277 |
+
|
278 |
+
# Reset sampling configurations
|
279 |
+
extras.sampling_configs['cfg'] = 4
|
280 |
+
extras.sampling_configs['shift'] = 2
|
281 |
+
extras.sampling_configs['timesteps'] = 20
|
282 |
+
extras.sampling_configs['t_start'] = 1.0
|
283 |
+
|
284 |
+
extras_b.sampling_configs['cfg'] = 1.1
|
285 |
+
extras_b.sampling_configs['shift'] = 1
|
286 |
+
extras_b.sampling_configs['timesteps'] = 10
|
287 |
+
extras_b.sampling_configs['t_start'] = 1.0
|
288 |
+
|
289 |
+
# Move models to CPU to free up GPU memory
|
290 |
+
models_to(models_rbm, device="cpu")
|
291 |
+
models_b.generator.to("cpu")
|
292 |
+
|
293 |
+
# Clear CUDA cache
|
294 |
+
torch.cuda.empty_cache()
|
295 |
+
gc.collect()
|
296 |
+
|
297 |
+
# Ensure all models are in eval mode and don't require gradients
|
298 |
+
for model in [models_rbm.generator, models_b.generator]:
|
299 |
+
model.eval()
|
300 |
+
for param in model.parameters():
|
301 |
+
param.requires_grad = False
|
302 |
+
|
303 |
+
# Clear CUDA cache again
|
304 |
+
torch.cuda.empty_cache()
|
305 |
+
gc.collect()
|
306 |
+
|
307 |
def infer_compo(style_description, ref_style_file, caption, ref_sub_file):
|
308 |
+
global models_rbm, models_b, device
|
309 |
try:
|
310 |
caption = f"{caption} in {style_description}"
|
311 |
sam_prompt = f"{caption}"
|
312 |
use_sam_mask = False
|
313 |
|
314 |
+
# Ensure all models are on the correct device
|
315 |
+
models_to(models_rbm, device)
|
316 |
+
models_b.generator.to(device)
|
317 |
|
318 |
batch_size = 1
|
319 |
height, width = 1024, 1024
|
320 |
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
|
321 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
ref_style = resize_image(PIL.Image.open(ref_style_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
|
323 |
ref_images = resize_image(PIL.Image.open(ref_sub_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
|
324 |
|
325 |
+
batch = {'captions': [caption] * batch_size, 'style': ref_style, 'images': ref_images}
|
|
|
|
|
326 |
|
327 |
+
x0_forward = models_rbm.effnet(extras.effnet_preprocess(ref_images))
|
328 |
+
x0_style_forward = models_rbm.effnet(extras.effnet_preprocess(ref_style))
|
329 |
|
330 |
## SAM Mask for sub
|
331 |
use_sam_mask = False
|
332 |
x0_preview = models_rbm.previewer(x0_forward)
|
333 |
sam_model = LangSAM()
|
334 |
+
sam_model.to(device)
|
335 |
|
336 |
+
x0_preview_pil = T.ToPILImage()(x0_preview[0].cpu())
|
|
|
|
|
337 |
sam_mask, boxes, phrases, logits = sam_model.predict(x0_preview_pil, sam_prompt)
|
338 |
sam_mask = sam_mask.detach().unsqueeze(dim=0).to(device)
|
339 |
|
|
|
343 |
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
344 |
|
345 |
if low_vram:
|
|
|
346 |
models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
|
347 |
models_to(sam_model, device="cpu")
|
348 |
models_to(sam_model.sam, device="cpu")
|
|
|
400 |
|
401 |
finally:
|
402 |
# Reset the state after inference, regardless of success or failure
|
403 |
+
reset_compo_inference_state()
|
404 |
|
405 |
import gradio as gr
|
406 |
|