RB-Modulation / Dockerfile
fffiloni's picture
Update Dockerfile
f9db221 verified
raw
history blame
3.57 kB
#FROM pytorch/pytorch:2.1.2-cuda11.8-cudnn8-devel
FROM pytorch/pytorch:2.1.2-cuda12.1-cudnn8-runtime
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && apt-get install -y \
build-essential \
python3 \
python3-pip \
python3-venv \
libssl-dev \
libffi-dev \
git \
wget \
ca-certificates \
libgl1-mesa-glx \
libglib2.0-0 \
python3-dev \
#cuda-toolkit-12-1 \
g++ \
&& rm -rf /var/lib/apt/lists/*
# Create a symlink for python
RUN ln -s /usr/bin/python3.9 /usr/bin/python
# Create a non-root user
RUN useradd -m -u 1000 user
USER user
# Verify CUDA installation path
RUN find /usr/local -type d -name "cuda*"
ENV HOME=/home/user \
PATH=/home/user/.local/bin:$PATH \
PYTHONPATH=$HOME/app \
PYTHONUNBUFFERED=1 \
GRADIO_ALLOW_FLAGGING=never \
GRADIO_NUM_PORTS=1 \
GRADIO_SERVER_NAME=0.0.0.0 \
GRADIO_THEME=huggingface \
GRADIO_SHARE=False \
SYSTEM=spaces
# Set CUDA_HOME environment variable
ENV CUDA_HOME=/usr/local/cuda-11.8
ENV TORCH_CUDA_ARCH_LIST="6.0;6.1;7.0;7.5;8.0;8.6+PTX;8.9;9.0"
ENV LD_LIBRARY_PATH=${CUDA_HOME}/lib64:${LD_LIBRARY_PATH}
# Set the environment variable to specify the GPU device
ENV CUDA_DEVICE_ORDER=PCI_BUS_ID
ENV CUDA_VISIBLE_DEVICES=0
# Clone the RB-Modulation repository
RUN git clone https://github.com/google/RB-Modulation.git $HOME/app
# Ensure CSD directory exists and is in the correct location
RUN if [ ! -d "$HOME/app/third_party/CSD" ]; then \
echo "CSD directory not found in the expected location" && \
exit 1; \
fi
# Set the working directory
WORKDIR $HOME/app
RUN python3 -m pip install --upgrade pip
# Download pretrained models
RUN cd third_party/StableCascade/models && \
bash download_models.sh essential big-big bfloat16 && \
cd ../../..
# Install StableCascade requirements
RUN cd third_party/StableCascade && \
pip install --no-cache-dir -r requirements.txt && \
pip install --no-cache-dir jupyter notebook opencv-python matplotlib ftfy && \
cd ../..
# Install gdown for Google Drive downloads
RUN pip install --no-cache-dir gdown
# Download pre-trained CSD weights
RUN gdown https://drive.google.com/uc?id=1FX0xs8p-C7Ob-h5Y4cUhTeOepHzXv_46 -O $HOME/app/third_party/CSD/checkpoint.pth
# Verify the download
RUN if [ ! -f "$HOME/app/third_party/CSD/checkpoint.pth" ]; then \
echo "CSD checkpoint file not found" && exit 1; \
fi
RUN ls -la $HOME/app/third_party/CSD
# Ensure CSD is a proper Python package
RUN touch $HOME/app/third_party/CSD/__init__.py
# Update PYTHONPATH
ENV PYTHONPATH=$HOME/app:$HOME/app/third_party:$PYTHONPATH
# Print Python path
RUN python -c "import sys; print('\n'.join(sys.path))"
# Verify CSD module can be imported (try different methods)
RUN python -c "from third_party.CSD import model; print('CSD model successfully imported')" || \
python -c "import sys; sys.path.append('/home/user/app/third_party'); from CSD import model; print('CSD model successfully imported')"
# Install LangSAM and its dependencies
RUN pip install --no-cache-dir git+https://github.com/IDEA-Research/GroundingDINO.git && \
pip install --no-cache-dir segment-anything==1.0 && \
git clone https://github.com/luca-medeiros/lang-segment-anything && \
cd lang-segment-anything && \
pip install -e . && \
cd ..
# Upgrade pip and install Gradio
RUN python3 -m pip install --no-cache-dir gradio==5.0.1
# Copy the app.py file from the host to the container
COPY --chown=user:user app.py .
# Command to run the Gradio app
CMD ["python3", "app.py"]