RB-Modulation / app.py
fffiloni's picture
do not cache examples
0d48c23 verified
raw
history blame
19.2 kB
import sys
import os
from pathlib import Path
import gc
# Add the StableCascade and CSD directories to the Python path
app_dir = Path(__file__).parent
sys.path.extend([
str(app_dir),
str(app_dir / "third_party" / "StableCascade"),
str(app_dir / "third_party" / "CSD")
])
import yaml
import torch
from tqdm import tqdm
from accelerate.utils import set_module_tensor_to_device
import torch.nn.functional as F
import torchvision.transforms as T
from lang_sam import LangSAM
from inference.utils import *
from core.utils import load_or_fail
from train import WurstCoreC, WurstCoreB
from gdf_rbm import RBM
from stage_c_rbm import StageCRBM
from utils import WurstCoreCRBM
from gdf.schedulers import CosineSchedule
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
from gdf.targets import EpsilonTarget
import PIL
# Device configuration
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
# Flag for low VRAM usage
low_vram = False
# Function definition for low VRAM usage
def models_to(model, device="cpu", excepts=None):
"""
Change the device of nn.Modules within a class, skipping specified attributes.
"""
for attr_name in dir(model):
if attr_name.startswith('__') and attr_name.endswith('__'):
continue # skip special attributes
attr_value = getattr(model, attr_name, None)
if isinstance(attr_value, torch.nn.Module):
if excepts and attr_name in excepts:
print(f"Except '{attr_name}'")
continue
print(f"Change device of '{attr_name}' to {device}")
attr_value.to(device)
torch.cuda.empty_cache()
gc.collect()
# Stage C model configuration
config_file = 'third_party/StableCascade/configs/inference/stage_c_3b.yaml'
with open(config_file, "r", encoding="utf-8") as file:
loaded_config = yaml.safe_load(file)
core = WurstCoreCRBM(config_dict=loaded_config, device=device, training=False)
# Stage B model configuration
config_file_b = 'third_party/StableCascade/configs/inference/stage_b_3b.yaml'
with open(config_file_b, "r", encoding="utf-8") as file:
config_file_b = yaml.safe_load(file)
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
# Setup extras and models for Stage C
extras = core.setup_extras_pre()
gdf_rbm = RBM(
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
input_scaler=VPScaler(), target=EpsilonTarget(),
noise_cond=CosineTNoiseCond(),
loss_weight=AdaptiveLossWeight(),
)
sampling_configs = {
"cfg": 5,
"sampler": DDPMSampler(gdf_rbm),
"shift": 1,
"timesteps": 20
}
extras = core.Extras(
gdf=gdf_rbm,
sampling_configs=sampling_configs,
transforms=extras.transforms,
effnet_preprocess=extras.effnet_preprocess,
clip_preprocess=extras.clip_preprocess
)
models = core.setup_models(extras)
models.generator.eval().requires_grad_(False)
# Setup extras and models for Stage B
extras_b = core_b.setup_extras_pre()
models_b = core_b.setup_models(extras_b, skip_clip=True)
models_b = WurstCoreB.Models(
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
)
models_b.generator.bfloat16().eval().requires_grad_(False)
if low_vram:
# Off-load old generator (which is not used in models_rbm)
models.generator.to("cpu")
torch.cuda.empty_cache()
gc.collect()
generator_rbm = StageCRBM()
for param_name, param in load_or_fail(core.config.generator_checkpoint_path).items():
set_module_tensor_to_device(generator_rbm, param_name, "cpu", value=param)
generator_rbm = generator_rbm.to(getattr(torch, core.config.dtype)).to(device)
generator_rbm = core.load_model(generator_rbm, 'generator')
models_rbm = core.Models(
effnet=models.effnet, previewer=models.previewer,
generator=generator_rbm, generator_ema=models.generator_ema,
tokenizer=models.tokenizer, text_model=models.text_model, image_model=models.image_model
)
models_rbm.generator.eval().requires_grad_(False)
def infer(ref_style_file, style_description, caption, progress):
global models_rbm, models_b, device
if low_vram:
models_to(models_rbm, device=device, excepts=["generator", "previewer"])
try:
caption = f"{caption} in {style_description}"
height=1024
width=1024
batch_size=1
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
extras.sampling_configs['cfg'] = 4
extras.sampling_configs['shift'] = 2
extras.sampling_configs['timesteps'] = 20
extras.sampling_configs['t_start'] = 1.0
extras_b.sampling_configs['cfg'] = 1.1
extras_b.sampling_configs['shift'] = 1
extras_b.sampling_configs['timesteps'] = 10
extras_b.sampling_configs['t_start'] = 1.0
progress(0.1, "Loading style reference image")
ref_style = resize_image(PIL.Image.open(ref_style_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
batch = {'captions': [caption] * batch_size}
batch['style'] = ref_style
progress(0.2, "Processing style reference image")
x0_style_forward = models_rbm.effnet(extras.effnet_preprocess(ref_style.to(device)))
progress(0.3, "Generating conditions")
conditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=False, eval_image_embeds=True, eval_style=True, eval_csd=False)
unconditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
if low_vram:
# The sampling process uses more vram, so we offload everything except two modules to the cpu.
models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
progress(0.4, "Starting Stage C reverse process")
# Stage C reverse process.
sampling_c = extras.gdf.sample(
models_rbm.generator, conditions, stage_c_latent_shape,
unconditions, device=device,
**extras.sampling_configs,
x0_style_forward=x0_style_forward,
apply_pushforward=False, tau_pushforward=8,
num_iter=3, eta=0.1, tau=20, eval_csd=True,
extras=extras, models=models_rbm,
lam_style=1, lam_txt_alignment=1.0,
use_ddim_sampler=True,
)
for (sampled_c, _, _) in progress.tqdm(tqdm(sampling_c, total=extras.sampling_configs['timesteps']), desc="Stage C reverse process"):
#for i, (sampled_c, _, _) in enumerate(sampling_c, 1):
# if i % 5 == 0: # Update progress every 5 steps
# progress(0.4 + 0.3 * (i / extras.sampling_configs['timesteps']), f"Stage C reverse process: step {i}/{extras.sampling_configs['timesteps']}")
sampled_c = sampled_c
progress(0.7, "Starting Stage B reverse process")
# Stage B reverse process.
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
conditions_b['effnet'] = sampled_c
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
sampling_b = extras_b.gdf.sample(
models_b.generator, conditions_b, stage_b_latent_shape,
unconditions_b, device=device, **extras_b.sampling_configs,
)
for sampled_b, _, _ in progress.tqdm(tqdm(sampling_b, total=extras_b.sampling_configs['timesteps']), desc="Stage B reverse process"):
#for i, (sampled_b, _, _) in enumerate(sampling_b, 1):
# if i % 1 == 0: # Update progress every 1 step
# progress(0.7 + 0.2 * (i / extras_b.sampling_configs['timesteps']), f"Stage B reverse process: step {i}/{extras_b.sampling_configs['timesteps']}")
sampled_b = sampled_b
sampled = models_b.stage_a.decode(sampled_b).float()
torch.cuda.empty_cache()
gc.collect()
progress(0.9, "Finalizing the output image")
sampled = torch.cat([
torch.nn.functional.interpolate(ref_style.cpu(), size=(height, width)),
sampled.cpu(),
], dim=0)
# Remove the batch dimension and keep only the generated image
sampled = sampled[1] # This selects the generated image, discarding the reference style image
# Ensure the tensor values are in the correct range
sampled = torch.clamp(sampled, 0, 1)
# Ensure the tensor is in [C, H, W] format
if sampled.dim() == 3 and sampled.shape[0] == 3:
sampled_image = T.ToPILImage()(sampled) # Convert tensor to PIL image
else:
raise ValueError(f"Expected tensor of shape [3, H, W] but got {sampled.shape}")
progress(1.0, "Inference complete")
return sampled_image # Return the sampled_image PIL image
finally:
# Clear CUDA cache
torch.cuda.empty_cache()
gc.collect()
def infer_compo(style_description, ref_style_file, caption, ref_sub_file, progress):
global models_rbm, models_b, device
sam_model = LangSAM()
if low_vram:
models_to(models_rbm, device=device, excepts=["generator", "previewer"])
models_to(sam_model, device=device)
models_to(sam_model.sam, device=device)
try:
caption = f"{caption} in {style_description}"
sam_prompt = f"{caption}"
use_sam_mask = False
batch_size = 1
height, width = 1024, 1024
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
extras.sampling_configs['cfg'] = 4
extras.sampling_configs['shift'] = 2
extras.sampling_configs['timesteps'] = 20
extras.sampling_configs['t_start'] = 1.0
extras_b.sampling_configs['cfg'] = 1.1
extras_b.sampling_configs['shift'] = 1
extras_b.sampling_configs['timesteps'] = 10
extras_b.sampling_configs['t_start'] = 1.0
progress(0.1, "Loading style and subject reference images")
ref_style = resize_image(PIL.Image.open(ref_style_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
ref_images = resize_image(PIL.Image.open(ref_sub_file).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1).to(device)
batch = {'captions': [caption] * batch_size}
batch['style'] = ref_style
batch['images'] = ref_images
progress(0.2, "Processing reference images")
x0_forward = models_rbm.effnet(extras.effnet_preprocess(ref_images.to(device)))
x0_style_forward = models_rbm.effnet(extras.effnet_preprocess(ref_style.to(device)))
## SAM Mask for sub
use_sam_mask = False
x0_preview = models_rbm.previewer(x0_forward)
x0_preview_pil = T.ToPILImage()(x0_preview[0].cpu())
sam_mask, boxes, phrases, logits = sam_model.predict(x0_preview_pil, sam_prompt)
# sam_mask, boxes, phrases, logits = sam_model.predict(transform(x0_preview[0]), sam_prompt)
sam_mask = sam_mask.detach().unsqueeze(dim=0).to(device)
progress(0.3, "Generating conditions")
conditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=False, eval_image_embeds=True, eval_subject_style=True, eval_csd=False)
unconditions = core.get_conditions(batch, models_rbm, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False, eval_subject_style=True)
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
if low_vram:
models_to(models_rbm, device="cpu", excepts=["generator", "previewer"])
models_to(sam_model, device="cpu")
models_to(sam_model.sam, device="cpu")
progress(0.4, "Starting Stage C reverse process")
# Stage C reverse process.
sampling_c = extras.gdf.sample(
models_rbm.generator, conditions, stage_c_latent_shape,
unconditions, device=device,
**extras.sampling_configs,
x0_style_forward=x0_style_forward, x0_forward=x0_forward,
apply_pushforward=False, tau_pushforward=5, tau_pushforward_csd=10,
num_iter=3, eta=1e-1, tau=20, eval_sub_csd=True,
extras=extras, models=models_rbm,
use_attn_mask=use_sam_mask,
save_attn_mask=False,
lam_content=1, lam_style=1,
sam_mask=sam_mask, use_sam_mask=use_sam_mask,
sam_prompt=sam_prompt
)
for sampled_c, _, _ in progress.tqdm(tqdm(sampling_c, total=extras.sampling_configs['timesteps']), desc="Stage C reverse process"):
#for i, (sampled_c, _, _) in enumerate(sampling_c, 1):
# if i % 5 == 0: # Update progress every 5 steps
# progress(0.4 + 0.3 * (i / extras.sampling_configs['timesteps']), f"Stage C reverse process: step {i}/{extras.sampling_configs['timesteps']}")
sampled_c = sampled_c
progress(0.7, "Starting Stage B reverse process")
# Stage B reverse process.
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.bfloat16):
conditions_b['effnet'] = sampled_c
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
sampling_b = extras_b.gdf.sample(
models_b.generator, conditions_b, stage_b_latent_shape,
unconditions_b, device=device, **extras_b.sampling_configs,
)
for sampled_b, _, _ in progress.tqdm(tqdm(sampling_b, total=extras_b.sampling_configs['timesteps']), desc="Stage B reverse process"):
#for i, (sampled_b, _, _) in enumerate(sampling_b, 1):
# if i % 5 == 0: # Update progress every 5 steps
# progress(0.7 + 0.2 * (i / extras_b.sampling_configs['timesteps']), f"Stage B reverse process: step {i}/{extras_b.sampling_configs['timesteps']}")
sampled_b = sampled_b
sampled = models_b.stage_a.decode(sampled_b).float()
torch.cuda.empty_cache()
gc.collect()
progress(0.9, "Finalizing the output image")
sampled = torch.cat([
torch.nn.functional.interpolate(ref_images.cpu(), size=(height, width)),
torch.nn.functional.interpolate(ref_style.cpu(), size=(height, width)),
sampled.cpu(),
], dim=0)
# Remove the batch dimension and keep only the generated image
sampled = sampled[2] # This selects the generated image, discarding the reference images
# Ensure the tensor values are in the correct range
sampled = torch.clamp(sampled, 0, 1)
# Ensure the tensor is in [C, H, W] format
if sampled.dim() == 3 and sampled.shape[0] == 3:
sampled_image = T.ToPILImage()(sampled) # Convert tensor to PIL image
else:
raise ValueError(f"Expected tensor of shape [3, H, W] but got {sampled.shape}")
progress(1.0, "Inference complete")
return sampled_image # Return the sampled_image PIL image
finally:
models_to(sam_model, device="cpu")
models_to(sam_model.sam, device="cpu")
# Clear CUDA cache
torch.cuda.empty_cache()
gc.collect()
def run(style_reference_image, style_description, subject_prompt, subject_reference, use_subject_ref):
result = None
progress = gr.Progress(track_tqdm=True)
if use_subject_ref is True:
result = infer_compo(style_description, style_reference_image, subject_prompt, subject_reference, progress)
else:
result = infer(style_reference_image, style_description, subject_prompt, progress)
return result
def show_hide_subject_image_component(use_subject_ref):
if use_subject_ref is True:
return gr.update(open=True)
else:
return gr.update(open=False)
import gradio as gr
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Column():
gr.Markdown("# RB-Modulation")
gr.Markdown("## Training-Free Personalization of Diffusion Models using Stochastic Optimal Control")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href='https://rb-modulation.github.io'>
<img src='https://img.shields.io/badge/Project-Page-Green'>
</a>
<a href='https://arxiv.org/pdf/2405.17401'>
<img src='https://img.shields.io/badge/Paper-Arxiv-red'>
</a>
</div>
""")
with gr.Row():
with gr.Column():
style_reference_image = gr.Image(
label = "Style Reference Image",
type = "filepath"
)
style_description = gr.Textbox(
label ="Style Description"
)
subject_prompt = gr.Textbox(
label = "Subject Prompt"
)
use_subject_ref = gr.Checkbox(label="Use Subject Image as Reference", value=False)
with gr.Accordion("Advanced Settings", open=False) as sub_img_panel:
subject_reference = gr.Image(label="Subject Reference", type="filepath")
submit_btn = gr.Button("Submit")
with gr.Column():
output_image = gr.Image(label="Output Image")
gr.Examples(
examples = [
["./data/cyberpunk.png", "cyberpunk art style", "a car", None, False],
["./data/mosaic.png", "mosaic art style", "a lighthouse", None, False],
["./data/glowing.png", "glowing style", "a dwarf", None, False],
["./data/melting_gold.png", "melting golden 3D rendering style", "a dog", "./data/dog.jpg", True]
],
fn=run,
inputs=[style_reference_image, style_description, subject_prompt, subject_reference, use_subject_ref],
outputs=[output_image],
cache_examples=False
)
use_subject_ref.input(
fn = show_hide_subject_image_component,
inputs = [use_subject_ref],
outputs = [sub_img_panel],
queue = False
)
submit_btn.click(
fn = run,
inputs = [style_reference_image, style_description, subject_prompt, subject_reference, use_subject_ref],
outputs = [output_image],
show_api = False
)
demo.queue().launch(show_error=True, show_api=False)