Update app.py
Browse files
app.py
CHANGED
@@ -17,6 +17,9 @@ using our implementation of the RAFT model. We will also see how to convert the
|
|
17 |
predicted flows to RGB images for visualization.
|
18 |
"""
|
19 |
|
|
|
|
|
|
|
20 |
import cv2
|
21 |
import numpy as np
|
22 |
import os
|
@@ -39,6 +42,53 @@ from scipy.interpolate import LinearNDInterpolator
|
|
39 |
from imageio import imread, imwrite
|
40 |
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def write_flo(flow, filename):
|
43 |
"""
|
44 |
Write optical flow in Middlebury .flo format
|
@@ -74,6 +124,9 @@ def infer():
|
|
74 |
#frames, _, _ = read_video(str("./spacex.mp4"), output_format="TCHW")
|
75 |
#print(f"FRAME BEFORE stack: {frames[100]}")
|
76 |
|
|
|
|
|
|
|
77 |
|
78 |
input_frame_1 = read_image(str("./frame1.jpg"), ImageReadMode.UNCHANGED)
|
79 |
print(f"FRAME 1: {input_frame_1}")
|
|
|
17 |
predicted flows to RGB images for visualization.
|
18 |
"""
|
19 |
|
20 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
21 |
+
from diffusers import UniPCMultistepScheduler
|
22 |
+
|
23 |
import cv2
|
24 |
import numpy as np
|
25 |
import os
|
|
|
42 |
from imageio import imread, imwrite
|
43 |
|
44 |
|
45 |
+
# Constants
|
46 |
+
low_threshold = 100
|
47 |
+
high_threshold = 200
|
48 |
+
|
49 |
+
# Models
|
50 |
+
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
|
51 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
52 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
|
53 |
+
)
|
54 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
55 |
+
|
56 |
+
# This command loads the individual model components on GPU on-demand. So, we don't
|
57 |
+
# need to explicitly call pipe.to("cuda").
|
58 |
+
pipe.enable_model_cpu_offload()
|
59 |
+
|
60 |
+
pipe.enable_xformers_memory_efficient_attention()
|
61 |
+
|
62 |
+
# Generator seed,
|
63 |
+
generator = torch.manual_seed(0)
|
64 |
+
|
65 |
+
def get_canny_filter(image):
|
66 |
+
if not isinstance(image, np.ndarray):
|
67 |
+
image = np.array(image)
|
68 |
+
|
69 |
+
image = cv2.Canny(image, low_threshold, high_threshold)
|
70 |
+
image = image[:, :, None]
|
71 |
+
image = np.concatenate([image, image, image], axis=2)
|
72 |
+
canny_image = Image.fromarray(image)
|
73 |
+
return canny_image
|
74 |
+
|
75 |
+
|
76 |
+
def generate_images(image, prompt):
|
77 |
+
canny_image = get_canny_filter(image)
|
78 |
+
output = pipe(
|
79 |
+
prompt,
|
80 |
+
canny_image,
|
81 |
+
generator=generator,
|
82 |
+
num_images_per_prompt=1,
|
83 |
+
num_inference_steps=20,
|
84 |
+
)
|
85 |
+
all_outputs = []
|
86 |
+
all_outputs.append(canny_image)
|
87 |
+
for image in output.images:
|
88 |
+
all_outputs.append(image)
|
89 |
+
return all_outputs
|
90 |
+
|
91 |
+
|
92 |
def write_flo(flow, filename):
|
93 |
"""
|
94 |
Write optical flow in Middlebury .flo format
|
|
|
124 |
#frames, _, _ = read_video(str("./spacex.mp4"), output_format="TCHW")
|
125 |
#print(f"FRAME BEFORE stack: {frames[100]}")
|
126 |
|
127 |
+
pil2diff_img = Image.open("./frame1.jpg")
|
128 |
+
diffused_img = generate_images(pil2diff_img)
|
129 |
+
print(f"DIFFUSED IMG: {diffused_img[1]}")
|
130 |
|
131 |
input_frame_1 = read_image(str("./frame1.jpg"), ImageReadMode.UNCHANGED)
|
132 |
print(f"FRAME 1: {input_frame_1}")
|