Update app.py
Browse files
app.py
CHANGED
@@ -210,6 +210,18 @@ def infer():
|
|
210 |
print(f"img1_batch shape: {img1_batch.shape}")
|
211 |
print(f"img1_batch dtype: {img1_batch.dtype}")
|
212 |
#res = get_warp_res(img1_batch, "predicted_flow.jpg", 'warped.png')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
#print(res)
|
214 |
return "done", "predicted_flow.jpg", ["flofile.flo"], 'frame_input.jpg'
|
215 |
####################################
|
|
|
210 |
print(f"img1_batch shape: {img1_batch.shape}")
|
211 |
print(f"img1_batch dtype: {img1_batch.dtype}")
|
212 |
#res = get_warp_res(img1_batch, "predicted_flow.jpg", 'warped.png')
|
213 |
+
|
214 |
+
h, w = predicted_flows.shape[:2]
|
215 |
+
flow = predicted_flows.copy()
|
216 |
+
flow[:, :, 0] + np.arange(w)
|
217 |
+
flow[:, :, 1] + np.arange(h)[:, np.newaxis]
|
218 |
+
# print('flow stats', flow.max(), flow.min(), flow.mean())
|
219 |
+
# print(flow)
|
220 |
+
flow*1.
|
221 |
+
# print('flow stats mul', flow.max(), flow.min(), flow.mean())
|
222 |
+
# res = cv2.remap(img, flow, None, cv2.INTER_LINEAR)
|
223 |
+
res = cv2.remap(img1_batch, flow, None, cv2.INTER_LANCZOS4)
|
224 |
+
|
225 |
#print(res)
|
226 |
return "done", "predicted_flow.jpg", ["flofile.flo"], 'frame_input.jpg'
|
227 |
####################################
|