Spaces:
Running
on
L40S
Running
on
L40S
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: ps-license@tuebingen.mpg.de | |
import cv2 | |
import numpy as np | |
from .glm import ortho | |
class Camera: | |
def __init__(self, width=1600, height=1200): | |
# Focal Length | |
# equivalent 50mm | |
focal = np.sqrt(width * width + height * height) | |
self.focal_x = focal | |
self.focal_y = focal | |
# Principal Point Offset | |
self.principal_x = width / 2 | |
self.principal_y = height / 2 | |
# Axis Skew | |
self.skew = 0 | |
# Image Size | |
self.width = width | |
self.height = height | |
self.near = 1 | |
self.far = 10 | |
# Camera Center | |
self.center = np.array([0, 0, 1.6]) | |
self.direction = np.array([0, 0, -1]) | |
self.right = np.array([1, 0, 0]) | |
self.up = np.array([0, 1, 0]) | |
self.ortho_ratio = None | |
def sanity_check(self): | |
self.center = self.center.reshape([-1]) | |
self.direction = self.direction.reshape([-1]) | |
self.right = self.right.reshape([-1]) | |
self.up = self.up.reshape([-1]) | |
assert len(self.center) == 3 | |
assert len(self.direction) == 3 | |
assert len(self.right) == 3 | |
assert len(self.up) == 3 | |
def normalize_vector(v): | |
v_norm = np.linalg.norm(v) | |
return v if v_norm == 0 else v / v_norm | |
def get_real_z_value(self, z): | |
z_near = self.near | |
z_far = self.far | |
z_n = 2.0 * z - 1.0 | |
z_e = 2.0 * z_near * z_far / (z_far + z_near - z_n * (z_far - z_near)) | |
return z_e | |
def get_rotation_matrix(self): | |
rot_mat = np.eye(3) | |
s = self.right | |
s = self.normalize_vector(s) | |
rot_mat[0, :] = s | |
u = self.up | |
u = self.normalize_vector(u) | |
rot_mat[1, :] = -u | |
rot_mat[2, :] = self.normalize_vector(self.direction) | |
return rot_mat | |
def get_translation_vector(self): | |
rot_mat = self.get_rotation_matrix() | |
trans = -np.dot(rot_mat, self.center) | |
return trans | |
def get_intrinsic_matrix(self): | |
int_mat = np.eye(3) | |
int_mat[0, 0] = self.focal_x | |
int_mat[1, 1] = self.focal_y | |
int_mat[0, 1] = self.skew | |
int_mat[0, 2] = self.principal_x | |
int_mat[1, 2] = self.principal_y | |
return int_mat | |
def get_projection_matrix(self): | |
ext_mat = self.get_extrinsic_matrix() | |
int_mat = self.get_intrinsic_matrix() | |
return np.matmul(int_mat, ext_mat) | |
def get_extrinsic_matrix(self): | |
rot_mat = self.get_rotation_matrix() | |
int_mat = self.get_intrinsic_matrix() | |
trans = self.get_translation_vector() | |
extrinsic = np.eye(4) | |
extrinsic[:3, :3] = rot_mat | |
extrinsic[:3, 3] = trans | |
return extrinsic[:3, :] | |
def set_rotation_matrix(self, rot_mat): | |
self.direction = rot_mat[2, :] | |
self.up = -rot_mat[1, :] | |
self.right = rot_mat[0, :] | |
def set_intrinsic_matrix(self, int_mat): | |
self.focal_x = int_mat[0, 0] | |
self.focal_y = int_mat[1, 1] | |
self.skew = int_mat[0, 1] | |
self.principal_x = int_mat[0, 2] | |
self.principal_y = int_mat[1, 2] | |
def set_projection_matrix(self, proj_mat): | |
res = cv2.decomposeProjectionMatrix(proj_mat) | |
int_mat, rot_mat, camera_center_homo = res[0], res[1], res[2] | |
camera_center = camera_center_homo[0:3] / camera_center_homo[3] | |
camera_center = camera_center.reshape(-1) | |
int_mat = int_mat / int_mat[2][2] | |
self.set_intrinsic_matrix(int_mat) | |
self.set_rotation_matrix(rot_mat) | |
self.center = camera_center | |
self.sanity_check() | |
def get_gl_matrix(self): | |
z_near = self.near | |
z_far = self.far | |
rot_mat = self.get_rotation_matrix() | |
int_mat = self.get_intrinsic_matrix() | |
trans = self.get_translation_vector() | |
extrinsic = np.eye(4) | |
extrinsic[:3, :3] = rot_mat | |
extrinsic[:3, 3] = trans | |
axis_adj = np.eye(4) | |
axis_adj[2, 2] = -1 | |
axis_adj[1, 1] = -1 | |
model_view = np.matmul(axis_adj, extrinsic) | |
projective = np.zeros([4, 4]) | |
projective[:2, :2] = int_mat[:2, :2] | |
projective[:2, 2:3] = -int_mat[:2, 2:3] | |
projective[3, 2] = -1 | |
projective[2, 2] = (z_near + z_far) | |
projective[2, 3] = (z_near * z_far) | |
if self.ortho_ratio is None: | |
ndc = ortho(0, self.width, 0, self.height, z_near, z_far) | |
perspective = np.matmul(ndc, projective) | |
else: | |
perspective = ortho(-self.width * self.ortho_ratio / 2, | |
self.width * self.ortho_ratio / 2, | |
-self.height * self.ortho_ratio / 2, | |
self.height * self.ortho_ratio / 2, z_near, | |
z_far) | |
return perspective, model_view | |
def KRT_from_P(proj_mat, normalize_K=True): | |
res = cv2.decomposeProjectionMatrix(proj_mat) | |
K, Rot, camera_center_homog = res[0], res[1], res[2] | |
camera_center = camera_center_homog[0:3] / camera_center_homog[3] | |
trans = -Rot.dot(camera_center) | |
if normalize_K: | |
K = K / K[2][2] | |
return K, Rot, trans | |
def MVP_from_P(proj_mat, width, height, near=0.1, far=10000): | |
''' | |
Convert OpenCV camera calibration matrix to OpenGL projection and model view matrix | |
:param proj_mat: OpenCV camera projeciton matrix | |
:param width: Image width | |
:param height: Image height | |
:param near: Z near value | |
:param far: Z far value | |
:return: OpenGL projection matrix and model view matrix | |
''' | |
res = cv2.decomposeProjectionMatrix(proj_mat) | |
K, Rot, camera_center_homog = res[0], res[1], res[2] | |
camera_center = camera_center_homog[0:3] / camera_center_homog[3] | |
trans = -Rot.dot(camera_center) | |
K = K / K[2][2] | |
extrinsic = np.eye(4) | |
extrinsic[:3, :3] = Rot | |
extrinsic[:3, 3:4] = trans | |
axis_adj = np.eye(4) | |
axis_adj[2, 2] = -1 | |
axis_adj[1, 1] = -1 | |
model_view = np.matmul(axis_adj, extrinsic) | |
zFar = far | |
zNear = near | |
projective = np.zeros([4, 4]) | |
projective[:2, :2] = K[:2, :2] | |
projective[:2, 2:3] = -K[:2, 2:3] | |
projective[3, 2] = -1 | |
projective[2, 2] = (zNear + zFar) | |
projective[2, 3] = (zNear * zFar) | |
ndc = ortho(0, width, 0, height, zNear, zFar) | |
perspective = np.matmul(ndc, projective) | |
return perspective, model_view | |