Spaces:
Running
on
L40S
Running
on
L40S
import torch.nn as nn | |
from .net_utils import PosEnSine, softmax_attention, dotproduct_attention, long_range_attention, \ | |
short_range_attention, patch_attention | |
class OurMultiheadAttention(nn.Module): | |
def __init__(self, q_feat_dim, k_feat_dim, out_feat_dim, n_head, d_k=None, d_v=None): | |
super(OurMultiheadAttention, self).__init__() | |
if d_k is None: | |
d_k = out_feat_dim // n_head | |
if d_v is None: | |
d_v = out_feat_dim // n_head | |
self.n_head = n_head | |
self.d_k = d_k | |
self.d_v = d_v | |
# pre-attention projection | |
self.w_qs = nn.Conv2d(q_feat_dim, n_head * d_k, 1, bias=False) | |
self.w_ks = nn.Conv2d(k_feat_dim, n_head * d_k, 1, bias=False) | |
self.w_vs = nn.Conv2d(out_feat_dim, n_head * d_v, 1, bias=False) | |
# after-attention combine heads | |
self.fc = nn.Conv2d(n_head * d_v, out_feat_dim, 1, bias=False) | |
def forward(self, q, k, v, attn_type='softmax', **kwargs): | |
# input: b x d x h x w | |
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head | |
# Pass through the pre-attention projection: b x (nhead*dk) x h x w | |
# Separate different heads: b x nhead x dk x h x w | |
q = self.w_qs(q).view(q.shape[0], n_head, d_k, q.shape[2], q.shape[3]) | |
k = self.w_ks(k).view(k.shape[0], n_head, d_k, k.shape[2], k.shape[3]) | |
v = self.w_vs(v).view(v.shape[0], n_head, d_v, v.shape[2], v.shape[3]) | |
# -------------- Attention ----------------- | |
if attn_type == 'softmax': | |
q, attn = softmax_attention(q, k, v) # b x n x dk x h x w --> b x n x dv x h x w | |
elif attn_type == 'dotproduct': | |
q, attn = dotproduct_attention(q, k, v) | |
elif attn_type == 'patch': | |
q, attn = patch_attention(q, k, v, P=kwargs['P']) | |
elif attn_type == 'sparse_long': | |
q, attn = long_range_attention(q, k, v, P_h=kwargs['ah'], P_w=kwargs['aw']) | |
elif attn_type == 'sparse_short': | |
q, attn = short_range_attention(q, k, v, Q_h=kwargs['ah'], Q_w=kwargs['aw']) | |
else: | |
raise NotImplementedError(f'Unknown attention type {attn_type}') | |
# ------------ end Attention --------------- | |
# Concatenate all the heads together: b x (n*dv) x h x w | |
q = q.reshape(q.shape[0], -1, q.shape[3], q.shape[4]) | |
q = self.fc(q) # b x d x h x w | |
return q, attn | |
class TransformerEncoderUnit(nn.Module): | |
def __init__(self, feat_dim, n_head=8, pos_en_flag=True, attn_type='softmax', P=None): | |
super(TransformerEncoderUnit, self).__init__() | |
self.feat_dim = feat_dim | |
self.attn_type = attn_type | |
self.pos_en_flag = pos_en_flag | |
self.P = P | |
self.pos_en = PosEnSine(self.feat_dim // 2) | |
self.attn = OurMultiheadAttention(feat_dim, n_head) | |
self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) | |
self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) | |
self.activation = nn.ReLU(inplace=True) | |
self.norm1 = nn.BatchNorm2d(self.feat_dim) | |
self.norm2 = nn.BatchNorm2d(self.feat_dim) | |
def forward(self, src): | |
if self.pos_en_flag: | |
pos_embed = self.pos_en(src) | |
else: | |
pos_embed = 0 | |
# multi-head attention | |
src2 = self.attn( | |
q=src + pos_embed, k=src + pos_embed, v=src, attn_type=self.attn_type, P=self.P | |
)[0] | |
src = src + src2 | |
src = self.norm1(src) | |
# feed forward | |
src2 = self.linear2(self.activation(self.linear1(src))) | |
src = src + src2 | |
src = self.norm2(src) | |
return src | |
class TransformerEncoderUnitSparse(nn.Module): | |
def __init__(self, feat_dim, n_head=8, pos_en_flag=True, ahw=None): | |
super(TransformerEncoderUnitSparse, self).__init__() | |
self.feat_dim = feat_dim | |
self.pos_en_flag = pos_en_flag | |
self.ahw = ahw # [Ph, Pw, Qh, Qw] | |
self.pos_en = PosEnSine(self.feat_dim // 2) | |
self.attn1 = OurMultiheadAttention(feat_dim, n_head) # long range | |
self.attn2 = OurMultiheadAttention(feat_dim, n_head) # short range | |
self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) | |
self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) | |
self.activation = nn.ReLU(inplace=True) | |
self.norm1 = nn.BatchNorm2d(self.feat_dim) | |
self.norm2 = nn.BatchNorm2d(self.feat_dim) | |
def forward(self, src): | |
if self.pos_en_flag: | |
pos_embed = self.pos_en(src) | |
else: | |
pos_embed = 0 | |
# multi-head long-range attention | |
src2 = self.attn1( | |
q=src + pos_embed, | |
k=src + pos_embed, | |
v=src, | |
attn_type='sparse_long', | |
ah=self.ahw[0], | |
aw=self.ahw[1] | |
)[0] | |
src = src + src2 # ? this might be ok to remove | |
# multi-head short-range attention | |
src2 = self.attn2( | |
q=src + pos_embed, | |
k=src + pos_embed, | |
v=src, | |
attn_type='sparse_short', | |
ah=self.ahw[2], | |
aw=self.ahw[3] | |
)[0] | |
src = src + src2 | |
src = self.norm1(src) | |
# feed forward | |
src2 = self.linear2(self.activation(self.linear1(src))) | |
src = src + src2 | |
src = self.norm2(src) | |
return src | |
class TransformerDecoderUnit(nn.Module): | |
def __init__(self, feat_dim, n_head=8, pos_en_flag=True, attn_type='softmax', P=None): | |
super(TransformerDecoderUnit, self).__init__() | |
self.feat_dim = feat_dim | |
self.attn_type = attn_type | |
self.pos_en_flag = pos_en_flag | |
self.P = P | |
self.pos_en = PosEnSine(self.feat_dim // 2) | |
self.attn1 = OurMultiheadAttention(feat_dim, n_head) # self-attention | |
self.attn2 = OurMultiheadAttention(feat_dim, n_head) # cross-attention | |
self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) | |
self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) | |
self.activation = nn.ReLU(inplace=True) | |
self.norm1 = nn.BatchNorm2d(self.feat_dim) | |
self.norm2 = nn.BatchNorm2d(self.feat_dim) | |
self.norm3 = nn.BatchNorm2d(self.feat_dim) | |
def forward(self, tgt, src): | |
if self.pos_en_flag: | |
src_pos_embed = self.pos_en(src) | |
tgt_pos_embed = self.pos_en(tgt) | |
else: | |
src_pos_embed = 0 | |
tgt_pos_embed = 0 | |
# self-multi-head attention | |
tgt2 = self.attn1( | |
q=tgt + tgt_pos_embed, k=tgt + tgt_pos_embed, v=tgt, attn_type=self.attn_type, P=self.P | |
)[0] | |
tgt = tgt + tgt2 | |
tgt = self.norm1(tgt) | |
# cross-multi-head attention | |
tgt2 = self.attn2( | |
q=tgt + tgt_pos_embed, k=src + src_pos_embed, v=src, attn_type=self.attn_type, P=self.P | |
)[0] | |
tgt = tgt + tgt2 | |
tgt = self.norm2(tgt) | |
# feed forward | |
tgt2 = self.linear2(self.activation(self.linear1(tgt))) | |
tgt = tgt + tgt2 | |
tgt = self.norm3(tgt) | |
return tgt | |
class TransformerDecoderUnitSparse(nn.Module): | |
def __init__(self, feat_dim, n_head=8, pos_en_flag=True, ahw=None): | |
super(TransformerDecoderUnitSparse, self).__init__() | |
self.feat_dim = feat_dim | |
self.ahw = ahw # [Ph_tgt, Pw_tgt, Qh_tgt, Qw_tgt, Ph_src, Pw_src, Qh_tgt, Qw_tgt] | |
self.pos_en_flag = pos_en_flag | |
self.pos_en = PosEnSine(self.feat_dim // 2) | |
self.attn1_1 = OurMultiheadAttention(feat_dim, n_head) # self-attention: long | |
self.attn1_2 = OurMultiheadAttention(feat_dim, n_head) # self-attention: short | |
self.attn2_1 = OurMultiheadAttention( | |
feat_dim, n_head | |
) # cross-attention: self-attention-long + cross-attention-short | |
self.attn2_2 = OurMultiheadAttention(feat_dim, n_head) | |
self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) | |
self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1) | |
self.activation = nn.ReLU(inplace=True) | |
self.norm1 = nn.BatchNorm2d(self.feat_dim) | |
self.norm2 = nn.BatchNorm2d(self.feat_dim) | |
self.norm3 = nn.BatchNorm2d(self.feat_dim) | |
def forward(self, tgt, src): | |
if self.pos_en_flag: | |
src_pos_embed = self.pos_en(src) | |
tgt_pos_embed = self.pos_en(tgt) | |
else: | |
src_pos_embed = 0 | |
tgt_pos_embed = 0 | |
# self-multi-head attention: sparse long | |
tgt2 = self.attn1_1( | |
q=tgt + tgt_pos_embed, | |
k=tgt + tgt_pos_embed, | |
v=tgt, | |
attn_type='sparse_long', | |
ah=self.ahw[0], | |
aw=self.ahw[1] | |
)[0] | |
tgt = tgt + tgt2 | |
# self-multi-head attention: sparse short | |
tgt2 = self.attn1_2( | |
q=tgt + tgt_pos_embed, | |
k=tgt + tgt_pos_embed, | |
v=tgt, | |
attn_type='sparse_short', | |
ah=self.ahw[2], | |
aw=self.ahw[3] | |
)[0] | |
tgt = tgt + tgt2 | |
tgt = self.norm1(tgt) | |
# self-multi-head attention: sparse long | |
src2 = self.attn2_1( | |
q=src + src_pos_embed, | |
k=src + src_pos_embed, | |
v=src, | |
attn_type='sparse_long', | |
ah=self.ahw[4], | |
aw=self.ahw[5] | |
)[0] | |
src = src + src2 | |
# cross-multi-head attention: sparse short | |
tgt2 = self.attn2_2( | |
q=tgt + tgt_pos_embed, | |
k=src + src_pos_embed, | |
v=src, | |
attn_type='sparse_short', | |
ah=self.ahw[6], | |
aw=self.ahw[7] | |
)[0] | |
tgt = tgt + tgt2 | |
tgt = self.norm2(tgt) | |
# feed forward | |
tgt2 = self.linear2(self.activation(self.linear1(tgt))) | |
tgt = tgt + tgt2 | |
tgt = self.norm3(tgt) | |
return tgt | |