PSHuman / lib /pymafx /models /transformers /transformer_basics.py
fffiloni's picture
Migrated from GitHub
2252f3d verified
raw
history blame
9.9 kB
import torch.nn as nn
from .net_utils import PosEnSine, softmax_attention, dotproduct_attention, long_range_attention, \
short_range_attention, patch_attention
class OurMultiheadAttention(nn.Module):
def __init__(self, q_feat_dim, k_feat_dim, out_feat_dim, n_head, d_k=None, d_v=None):
super(OurMultiheadAttention, self).__init__()
if d_k is None:
d_k = out_feat_dim // n_head
if d_v is None:
d_v = out_feat_dim // n_head
self.n_head = n_head
self.d_k = d_k
self.d_v = d_v
# pre-attention projection
self.w_qs = nn.Conv2d(q_feat_dim, n_head * d_k, 1, bias=False)
self.w_ks = nn.Conv2d(k_feat_dim, n_head * d_k, 1, bias=False)
self.w_vs = nn.Conv2d(out_feat_dim, n_head * d_v, 1, bias=False)
# after-attention combine heads
self.fc = nn.Conv2d(n_head * d_v, out_feat_dim, 1, bias=False)
def forward(self, q, k, v, attn_type='softmax', **kwargs):
# input: b x d x h x w
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
# Pass through the pre-attention projection: b x (nhead*dk) x h x w
# Separate different heads: b x nhead x dk x h x w
q = self.w_qs(q).view(q.shape[0], n_head, d_k, q.shape[2], q.shape[3])
k = self.w_ks(k).view(k.shape[0], n_head, d_k, k.shape[2], k.shape[3])
v = self.w_vs(v).view(v.shape[0], n_head, d_v, v.shape[2], v.shape[3])
# -------------- Attention -----------------
if attn_type == 'softmax':
q, attn = softmax_attention(q, k, v) # b x n x dk x h x w --> b x n x dv x h x w
elif attn_type == 'dotproduct':
q, attn = dotproduct_attention(q, k, v)
elif attn_type == 'patch':
q, attn = patch_attention(q, k, v, P=kwargs['P'])
elif attn_type == 'sparse_long':
q, attn = long_range_attention(q, k, v, P_h=kwargs['ah'], P_w=kwargs['aw'])
elif attn_type == 'sparse_short':
q, attn = short_range_attention(q, k, v, Q_h=kwargs['ah'], Q_w=kwargs['aw'])
else:
raise NotImplementedError(f'Unknown attention type {attn_type}')
# ------------ end Attention ---------------
# Concatenate all the heads together: b x (n*dv) x h x w
q = q.reshape(q.shape[0], -1, q.shape[3], q.shape[4])
q = self.fc(q) # b x d x h x w
return q, attn
class TransformerEncoderUnit(nn.Module):
def __init__(self, feat_dim, n_head=8, pos_en_flag=True, attn_type='softmax', P=None):
super(TransformerEncoderUnit, self).__init__()
self.feat_dim = feat_dim
self.attn_type = attn_type
self.pos_en_flag = pos_en_flag
self.P = P
self.pos_en = PosEnSine(self.feat_dim // 2)
self.attn = OurMultiheadAttention(feat_dim, n_head)
self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1)
self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1)
self.activation = nn.ReLU(inplace=True)
self.norm1 = nn.BatchNorm2d(self.feat_dim)
self.norm2 = nn.BatchNorm2d(self.feat_dim)
def forward(self, src):
if self.pos_en_flag:
pos_embed = self.pos_en(src)
else:
pos_embed = 0
# multi-head attention
src2 = self.attn(
q=src + pos_embed, k=src + pos_embed, v=src, attn_type=self.attn_type, P=self.P
)[0]
src = src + src2
src = self.norm1(src)
# feed forward
src2 = self.linear2(self.activation(self.linear1(src)))
src = src + src2
src = self.norm2(src)
return src
class TransformerEncoderUnitSparse(nn.Module):
def __init__(self, feat_dim, n_head=8, pos_en_flag=True, ahw=None):
super(TransformerEncoderUnitSparse, self).__init__()
self.feat_dim = feat_dim
self.pos_en_flag = pos_en_flag
self.ahw = ahw # [Ph, Pw, Qh, Qw]
self.pos_en = PosEnSine(self.feat_dim // 2)
self.attn1 = OurMultiheadAttention(feat_dim, n_head) # long range
self.attn2 = OurMultiheadAttention(feat_dim, n_head) # short range
self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1)
self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1)
self.activation = nn.ReLU(inplace=True)
self.norm1 = nn.BatchNorm2d(self.feat_dim)
self.norm2 = nn.BatchNorm2d(self.feat_dim)
def forward(self, src):
if self.pos_en_flag:
pos_embed = self.pos_en(src)
else:
pos_embed = 0
# multi-head long-range attention
src2 = self.attn1(
q=src + pos_embed,
k=src + pos_embed,
v=src,
attn_type='sparse_long',
ah=self.ahw[0],
aw=self.ahw[1]
)[0]
src = src + src2 # ? this might be ok to remove
# multi-head short-range attention
src2 = self.attn2(
q=src + pos_embed,
k=src + pos_embed,
v=src,
attn_type='sparse_short',
ah=self.ahw[2],
aw=self.ahw[3]
)[0]
src = src + src2
src = self.norm1(src)
# feed forward
src2 = self.linear2(self.activation(self.linear1(src)))
src = src + src2
src = self.norm2(src)
return src
class TransformerDecoderUnit(nn.Module):
def __init__(self, feat_dim, n_head=8, pos_en_flag=True, attn_type='softmax', P=None):
super(TransformerDecoderUnit, self).__init__()
self.feat_dim = feat_dim
self.attn_type = attn_type
self.pos_en_flag = pos_en_flag
self.P = P
self.pos_en = PosEnSine(self.feat_dim // 2)
self.attn1 = OurMultiheadAttention(feat_dim, n_head) # self-attention
self.attn2 = OurMultiheadAttention(feat_dim, n_head) # cross-attention
self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1)
self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1)
self.activation = nn.ReLU(inplace=True)
self.norm1 = nn.BatchNorm2d(self.feat_dim)
self.norm2 = nn.BatchNorm2d(self.feat_dim)
self.norm3 = nn.BatchNorm2d(self.feat_dim)
def forward(self, tgt, src):
if self.pos_en_flag:
src_pos_embed = self.pos_en(src)
tgt_pos_embed = self.pos_en(tgt)
else:
src_pos_embed = 0
tgt_pos_embed = 0
# self-multi-head attention
tgt2 = self.attn1(
q=tgt + tgt_pos_embed, k=tgt + tgt_pos_embed, v=tgt, attn_type=self.attn_type, P=self.P
)[0]
tgt = tgt + tgt2
tgt = self.norm1(tgt)
# cross-multi-head attention
tgt2 = self.attn2(
q=tgt + tgt_pos_embed, k=src + src_pos_embed, v=src, attn_type=self.attn_type, P=self.P
)[0]
tgt = tgt + tgt2
tgt = self.norm2(tgt)
# feed forward
tgt2 = self.linear2(self.activation(self.linear1(tgt)))
tgt = tgt + tgt2
tgt = self.norm3(tgt)
return tgt
class TransformerDecoderUnitSparse(nn.Module):
def __init__(self, feat_dim, n_head=8, pos_en_flag=True, ahw=None):
super(TransformerDecoderUnitSparse, self).__init__()
self.feat_dim = feat_dim
self.ahw = ahw # [Ph_tgt, Pw_tgt, Qh_tgt, Qw_tgt, Ph_src, Pw_src, Qh_tgt, Qw_tgt]
self.pos_en_flag = pos_en_flag
self.pos_en = PosEnSine(self.feat_dim // 2)
self.attn1_1 = OurMultiheadAttention(feat_dim, n_head) # self-attention: long
self.attn1_2 = OurMultiheadAttention(feat_dim, n_head) # self-attention: short
self.attn2_1 = OurMultiheadAttention(
feat_dim, n_head
) # cross-attention: self-attention-long + cross-attention-short
self.attn2_2 = OurMultiheadAttention(feat_dim, n_head)
self.linear1 = nn.Conv2d(self.feat_dim, self.feat_dim, 1)
self.linear2 = nn.Conv2d(self.feat_dim, self.feat_dim, 1)
self.activation = nn.ReLU(inplace=True)
self.norm1 = nn.BatchNorm2d(self.feat_dim)
self.norm2 = nn.BatchNorm2d(self.feat_dim)
self.norm3 = nn.BatchNorm2d(self.feat_dim)
def forward(self, tgt, src):
if self.pos_en_flag:
src_pos_embed = self.pos_en(src)
tgt_pos_embed = self.pos_en(tgt)
else:
src_pos_embed = 0
tgt_pos_embed = 0
# self-multi-head attention: sparse long
tgt2 = self.attn1_1(
q=tgt + tgt_pos_embed,
k=tgt + tgt_pos_embed,
v=tgt,
attn_type='sparse_long',
ah=self.ahw[0],
aw=self.ahw[1]
)[0]
tgt = tgt + tgt2
# self-multi-head attention: sparse short
tgt2 = self.attn1_2(
q=tgt + tgt_pos_embed,
k=tgt + tgt_pos_embed,
v=tgt,
attn_type='sparse_short',
ah=self.ahw[2],
aw=self.ahw[3]
)[0]
tgt = tgt + tgt2
tgt = self.norm1(tgt)
# self-multi-head attention: sparse long
src2 = self.attn2_1(
q=src + src_pos_embed,
k=src + src_pos_embed,
v=src,
attn_type='sparse_long',
ah=self.ahw[4],
aw=self.ahw[5]
)[0]
src = src + src2
# cross-multi-head attention: sparse short
tgt2 = self.attn2_2(
q=tgt + tgt_pos_embed,
k=src + src_pos_embed,
v=src,
attn_type='sparse_short',
ah=self.ahw[6],
aw=self.ahw[7]
)[0]
tgt = tgt + tgt2
tgt = self.norm2(tgt)
# feed forward
tgt2 = self.linear2(self.activation(self.linear1(tgt)))
tgt = tgt + tgt2
tgt = self.norm3(tgt)
return tgt