Spaces:
Running
on
L40S
Running
on
L40S
""" | |
This file contains functions that are used to perform data augmentation. | |
""" | |
from turtle import reset | |
import cv2 | |
import io | |
import torch | |
import numpy as np | |
import scipy.misc | |
from PIL import Image | |
from rembg.bg import remove | |
from torchvision.models import detection | |
from lib.pymaf.core import constants | |
from lib.pymaf.utils.streamer import aug_matrix | |
from lib.common.cloth_extraction import load_segmentation | |
from torchvision import transforms | |
def load_img(img_file): | |
img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED) | |
if len(img.shape) == 2: | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
if not img_file.endswith("png"): | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
else: | |
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR) | |
return img | |
def get_bbox(img, det): | |
input = np.float32(img) | |
input = (input / 255.0 - | |
(0.5, 0.5, 0.5)) / (0.5, 0.5, 0.5) # TO [-1.0, 1.0] | |
input = input.transpose(2, 0, 1) # TO [3 x H x W] | |
bboxes, probs = det(torch.from_numpy(input).float().unsqueeze(0)) | |
probs = probs.unsqueeze(3) | |
bboxes = (bboxes * probs).sum(dim=1, keepdim=True) / probs.sum( | |
dim=1, keepdim=True) | |
bbox = bboxes[0, 0, 0].cpu().numpy() | |
return bbox | |
def get_transformer(input_res): | |
image_to_tensor = transforms.Compose([ | |
transforms.Resize(input_res), | |
transforms.ToTensor(), | |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) | |
]) | |
mask_to_tensor = transforms.Compose([ | |
transforms.Resize(input_res), | |
transforms.ToTensor(), | |
transforms.Normalize((0.0, ), (1.0, )) | |
]) | |
image_to_pymaf_tensor = transforms.Compose([ | |
transforms.Resize(size=224), | |
transforms.Normalize(mean=constants.IMG_NORM_MEAN, | |
std=constants.IMG_NORM_STD) | |
]) | |
image_to_pixie_tensor = transforms.Compose([transforms.Resize(224)]) | |
def image_to_hybrik_tensor(img): | |
# mean | |
img[0].add_(-0.406) | |
img[1].add_(-0.457) | |
img[2].add_(-0.480) | |
# std | |
img[0].div_(0.225) | |
img[1].div_(0.224) | |
img[2].div_(0.229) | |
return img | |
return [ | |
image_to_tensor, mask_to_tensor, image_to_pymaf_tensor, | |
image_to_pixie_tensor, image_to_hybrik_tensor | |
] | |
def process_image(img_file, | |
hps_type, | |
input_res=512, | |
device=None, | |
seg_path=None): | |
"""Read image, do preprocessing and possibly crop it according to the bounding box. | |
If there are bounding box annotations, use them to crop the image. | |
If no bounding box is specified but openpose detections are available, use them to get the bounding box. | |
""" | |
[ | |
image_to_tensor, mask_to_tensor, image_to_pymaf_tensor, | |
image_to_pixie_tensor, image_to_hybrik_tensor | |
] = get_transformer(input_res) | |
img_ori = load_img(img_file) | |
in_height, in_width, _ = img_ori.shape | |
M = aug_matrix(in_width, in_height, input_res * 2, input_res * 2) | |
# from rectangle to square | |
img_for_crop = cv2.warpAffine(img_ori, | |
M[0:2, :], (input_res * 2, input_res * 2), | |
flags=cv2.INTER_CUBIC) | |
# detection for bbox | |
detector = detection.maskrcnn_resnet50_fpn(pretrained=True) | |
detector.eval() | |
predictions = detector( | |
[torch.from_numpy(img_for_crop).permute(2, 0, 1) / 255.])[0] | |
human_ids = torch.logical_and( | |
predictions["labels"] == 1, | |
predictions["scores"] == predictions["scores"].max()).nonzero().squeeze(1) | |
bbox = predictions["boxes"][human_ids, :].flatten().detach().cpu().numpy() | |
width = bbox[2] - bbox[0] | |
height = bbox[3] - bbox[1] | |
center = np.array([(bbox[0] + bbox[2]) / 2.0, | |
(bbox[1] + bbox[3]) / 2.0]) | |
scale = max(height, width) / 180 | |
if hps_type == 'hybrik': | |
img_np = crop_for_hybrik(img_for_crop, center, | |
np.array([scale * 180, scale * 180])) | |
else: | |
img_np, cropping_parameters = crop(img_for_crop, center, scale, | |
(input_res, input_res)) | |
with torch.no_grad(): | |
buf = io.BytesIO() | |
Image.fromarray(img_np).save(buf, format='png') | |
img_pil = Image.open(io.BytesIO(remove( | |
buf.getvalue()))).convert("RGBA") | |
# for icon | |
img_rgb = image_to_tensor(img_pil.convert("RGB")) | |
img_mask = torch.tensor(1.0) - (mask_to_tensor(img_pil.split()[-1]) < | |
torch.tensor(0.5)).float() | |
img_tensor = img_rgb * img_mask | |
# for hps | |
img_hps = img_np.astype(np.float32) / 255. | |
img_hps = torch.from_numpy(img_hps).permute(2, 0, 1) | |
if hps_type == 'bev': | |
img_hps = img_np[:, :, [2, 1, 0]] | |
elif hps_type == 'hybrik': | |
img_hps = image_to_hybrik_tensor(img_hps).unsqueeze(0).to(device) | |
elif hps_type != 'pixie': | |
img_hps = image_to_pymaf_tensor(img_hps).unsqueeze(0).to(device) | |
else: | |
img_hps = image_to_pixie_tensor(img_hps).unsqueeze(0).to(device) | |
# uncrop params | |
uncrop_param = { | |
'center': center, | |
'scale': scale, | |
'ori_shape': img_ori.shape, | |
'box_shape': img_np.shape, | |
'crop_shape': img_for_crop.shape, | |
'M': M | |
} | |
if not (seg_path is None): | |
segmentations = load_segmentation(seg_path, (in_height, in_width)) | |
seg_coord_normalized = [] | |
for seg in segmentations: | |
coord_normalized = [] | |
for xy in seg['coordinates']: | |
xy_h = np.vstack((xy[:, 0], xy[:, 1], np.ones(len(xy)))).T | |
warped_indeces = M[0:2, :] @ xy_h[:, :, None] | |
warped_indeces = np.array(warped_indeces).astype(int) | |
warped_indeces.resize((warped_indeces.shape[:2])) | |
# cropped_indeces = crop_segmentation(warped_indeces, center, scale, (input_res, input_res), img_np.shape) | |
cropped_indeces = crop_segmentation(warped_indeces, | |
(input_res, input_res), | |
cropping_parameters) | |
indices = np.vstack( | |
(cropped_indeces[:, 0], cropped_indeces[:, 1])).T | |
# Convert to NDC coordinates | |
seg_cropped_normalized = 2 * (indices / input_res) - 1 | |
# Don't know why we need to divide by 50 but it works ¯\_(ツ)_/¯ (probably some scaling factor somewhere) | |
# Divide only by 45 on the horizontal axis to take the curve of the human body into account | |
seg_cropped_normalized[:, | |
0] = (1 / | |
40) * seg_cropped_normalized[:, 0] | |
seg_cropped_normalized[:, | |
1] = (1 / | |
50) * seg_cropped_normalized[:, 1] | |
coord_normalized.append(seg_cropped_normalized) | |
seg['coord_normalized'] = coord_normalized | |
seg_coord_normalized.append(seg) | |
return img_tensor, img_hps, img_ori, img_mask, uncrop_param, seg_coord_normalized | |
return img_tensor, img_hps, img_ori, img_mask, uncrop_param | |
def get_transform(center, scale, res): | |
"""Generate transformation matrix.""" | |
h = 200 * scale | |
t = np.zeros((3, 3)) | |
t[0, 0] = float(res[1]) / h | |
t[1, 1] = float(res[0]) / h | |
t[0, 2] = res[1] * (-float(center[0]) / h + .5) | |
t[1, 2] = res[0] * (-float(center[1]) / h + .5) | |
t[2, 2] = 1 | |
return t | |
def transform(pt, center, scale, res, invert=0): | |
"""Transform pixel location to different reference.""" | |
t = get_transform(center, scale, res) | |
if invert: | |
t = np.linalg.inv(t) | |
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T | |
new_pt = np.dot(t, new_pt) | |
return np.around(new_pt[:2]).astype(np.int16) | |
def crop(img, center, scale, res): | |
"""Crop image according to the supplied bounding box.""" | |
# Upper left point | |
ul = np.array(transform([0, 0], center, scale, res, invert=1)) | |
# Bottom right point | |
br = np.array(transform(res, center, scale, res, invert=1)) | |
new_shape = [br[1] - ul[1], br[0] - ul[0]] | |
if len(img.shape) > 2: | |
new_shape += [img.shape[2]] | |
new_img = np.zeros(new_shape) | |
# Range to fill new array | |
new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0] | |
new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1] | |
# Range to sample from original image | |
old_x = max(0, ul[0]), min(len(img[0]), br[0]) | |
old_y = max(0, ul[1]), min(len(img), br[1]) | |
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], | |
old_x[0]:old_x[1]] | |
if len(img.shape) == 2: | |
new_img = np.array(Image.fromarray(new_img).resize(res)) | |
else: | |
new_img = np.array( | |
Image.fromarray(new_img.astype(np.uint8)).resize(res)) | |
return new_img, (old_x, new_x, old_y, new_y, new_shape) | |
def crop_segmentation(org_coord, res, cropping_parameters): | |
old_x, new_x, old_y, new_y, new_shape = cropping_parameters | |
new_coord = np.zeros((org_coord.shape)) | |
new_coord[:, 0] = new_x[0] + (org_coord[:, 0] - old_x[0]) | |
new_coord[:, 1] = new_y[0] + (org_coord[:, 1] - old_y[0]) | |
new_coord[:, 0] = res[0] * (new_coord[:, 0] / new_shape[1]) | |
new_coord[:, 1] = res[1] * (new_coord[:, 1] / new_shape[0]) | |
return new_coord | |
def crop_for_hybrik(img, center, scale): | |
inp_h, inp_w = (256, 256) | |
trans = get_affine_transform(center, scale, 0, [inp_w, inp_h]) | |
new_img = cv2.warpAffine(img, | |
trans, (int(inp_w), int(inp_h)), | |
flags=cv2.INTER_LINEAR) | |
return new_img | |
def get_affine_transform(center, | |
scale, | |
rot, | |
output_size, | |
shift=np.array([0, 0], dtype=np.float32), | |
inv=0): | |
def get_dir(src_point, rot_rad): | |
"""Rotate the point by `rot_rad` degree.""" | |
sn, cs = np.sin(rot_rad), np.cos(rot_rad) | |
src_result = [0, 0] | |
src_result[0] = src_point[0] * cs - src_point[1] * sn | |
src_result[1] = src_point[0] * sn + src_point[1] * cs | |
return src_result | |
def get_3rd_point(a, b): | |
"""Return vector c that perpendicular to (a - b).""" | |
direct = a - b | |
return b + np.array([-direct[1], direct[0]], dtype=np.float32) | |
if not isinstance(scale, np.ndarray) and not isinstance(scale, list): | |
scale = np.array([scale, scale]) | |
scale_tmp = scale | |
src_w = scale_tmp[0] | |
dst_w = output_size[0] | |
dst_h = output_size[1] | |
rot_rad = np.pi * rot / 180 | |
src_dir = get_dir([0, src_w * -0.5], rot_rad) | |
dst_dir = np.array([0, dst_w * -0.5], np.float32) | |
src = np.zeros((3, 2), dtype=np.float32) | |
dst = np.zeros((3, 2), dtype=np.float32) | |
src[0, :] = center + scale_tmp * shift | |
src[1, :] = center + src_dir + scale_tmp * shift | |
dst[0, :] = [dst_w * 0.5, dst_h * 0.5] | |
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir | |
src[2:, :] = get_3rd_point(src[0, :], src[1, :]) | |
dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :]) | |
if inv: | |
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) | |
else: | |
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) | |
return trans | |
def corner_align(ul, br): | |
if ul[1] - ul[0] != br[1] - br[0]: | |
ul[1] = ul[0] + br[1] - br[0] | |
return ul, br | |
def uncrop(img, center, scale, orig_shape): | |
"""'Undo' the image cropping/resizing. | |
This function is used when evaluating mask/part segmentation. | |
""" | |
res = img.shape[:2] | |
# Upper left point | |
ul = np.array(transform([0, 0], center, scale, res, invert=1)) | |
# Bottom right point | |
br = np.array(transform(res, center, scale, res, invert=1)) | |
# quick fix | |
ul, br = corner_align(ul, br) | |
# size of cropped image | |
crop_shape = [br[1] - ul[1], br[0] - ul[0]] | |
new_img = np.zeros(orig_shape, dtype=np.uint8) | |
# Range to fill new array | |
new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0] | |
new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1] | |
# Range to sample from original image | |
old_x = max(0, ul[0]), min(orig_shape[1], br[0]) | |
old_y = max(0, ul[1]), min(orig_shape[0], br[1]) | |
img = np.array(Image.fromarray(img.astype(np.uint8)).resize(crop_shape)) | |
new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]] = img[new_y[0]:new_y[1], | |
new_x[0]:new_x[1]] | |
return new_img | |
def rot_aa(aa, rot): | |
"""Rotate axis angle parameters.""" | |
# pose parameters | |
R = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], | |
[np.sin(np.deg2rad(-rot)), | |
np.cos(np.deg2rad(-rot)), 0], [0, 0, 1]]) | |
# find the rotation of the body in camera frame | |
per_rdg, _ = cv2.Rodrigues(aa) | |
# apply the global rotation to the global orientation | |
resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg)) | |
aa = (resrot.T)[0] | |
return aa | |
def flip_img(img): | |
"""Flip rgb images or masks. | |
channels come last, e.g. (256,256,3). | |
""" | |
img = np.fliplr(img) | |
return img | |
def flip_kp(kp, is_smpl=False): | |
"""Flip keypoints.""" | |
if len(kp) == 24: | |
if is_smpl: | |
flipped_parts = constants.SMPL_JOINTS_FLIP_PERM | |
else: | |
flipped_parts = constants.J24_FLIP_PERM | |
elif len(kp) == 49: | |
if is_smpl: | |
flipped_parts = constants.SMPL_J49_FLIP_PERM | |
else: | |
flipped_parts = constants.J49_FLIP_PERM | |
kp = kp[flipped_parts] | |
kp[:, 0] = -kp[:, 0] | |
return kp | |
def flip_pose(pose): | |
"""Flip pose. | |
The flipping is based on SMPL parameters. | |
""" | |
flipped_parts = constants.SMPL_POSE_FLIP_PERM | |
pose = pose[flipped_parts] | |
# we also negate the second and the third dimension of the axis-angle | |
pose[1::3] = -pose[1::3] | |
pose[2::3] = -pose[2::3] | |
return pose | |
def normalize_2d_kp(kp_2d, crop_size=224, inv=False): | |
# Normalize keypoints between -1, 1 | |
if not inv: | |
ratio = 1.0 / crop_size | |
kp_2d = 2.0 * kp_2d * ratio - 1.0 | |
else: | |
ratio = 1.0 / crop_size | |
kp_2d = (kp_2d + 1.0) / (2 * ratio) | |
return kp_2d | |
def generate_heatmap(joints, heatmap_size, sigma=1, joints_vis=None): | |
''' | |
param joints: [num_joints, 3] | |
param joints_vis: [num_joints, 3] | |
return: target, target_weight(1: visible, 0: invisible) | |
''' | |
num_joints = joints.shape[0] | |
device = joints.device | |
cur_device = torch.device(device.type, device.index) | |
if not hasattr(heatmap_size, '__len__'): | |
# width height | |
heatmap_size = [heatmap_size, heatmap_size] | |
assert len(heatmap_size) == 2 | |
target_weight = np.ones((num_joints, 1), dtype=np.float32) | |
if joints_vis is not None: | |
target_weight[:, 0] = joints_vis[:, 0] | |
target = torch.zeros((num_joints, heatmap_size[1], heatmap_size[0]), | |
dtype=torch.float32, | |
device=cur_device) | |
tmp_size = sigma * 3 | |
for joint_id in range(num_joints): | |
mu_x = int(joints[joint_id][0] * heatmap_size[0] + 0.5) | |
mu_y = int(joints[joint_id][1] * heatmap_size[1] + 0.5) | |
# Check that any part of the gaussian is in-bounds | |
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)] | |
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)] | |
if ul[0] >= heatmap_size[0] or ul[1] >= heatmap_size[1] \ | |
or br[0] < 0 or br[1] < 0: | |
# If not, just return the image as is | |
target_weight[joint_id] = 0 | |
continue | |
# # Generate gaussian | |
size = 2 * tmp_size + 1 | |
# x = np.arange(0, size, 1, np.float32) | |
# y = x[:, np.newaxis] | |
# x0 = y0 = size // 2 | |
# # The gaussian is not normalized, we want the center value to equal 1 | |
# g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) | |
# g = torch.from_numpy(g.astype(np.float32)) | |
x = torch.arange(0, size, dtype=torch.float32, device=cur_device) | |
y = x.unsqueeze(-1) | |
x0 = y0 = size // 2 | |
# The gaussian is not normalized, we want the center value to equal 1 | |
g = torch.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2)) | |
# Usable gaussian range | |
g_x = max(0, -ul[0]), min(br[0], heatmap_size[0]) - ul[0] | |
g_y = max(0, -ul[1]), min(br[1], heatmap_size[1]) - ul[1] | |
# Image range | |
img_x = max(0, ul[0]), min(br[0], heatmap_size[0]) | |
img_y = max(0, ul[1]), min(br[1], heatmap_size[1]) | |
v = target_weight[joint_id] | |
if v > 0.5: | |
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \ | |
g[g_y[0]:g_y[1], g_x[0]:g_x[1]] | |
return target, target_weight | |