Spaces:
Sleeping
Sleeping
import numpy as np | |
def deg2rad(deg): | |
return deg*np.pi/180 | |
def inv_RT(RT): | |
# RT_h = np.concatenate([RT, np.array([[0,0,0,1]])], axis=0) | |
RT_inv = np.linalg.inv(RT) | |
return RT_inv[:3, :] | |
def camNormal2worldNormal(rot_c2w, camNormal): | |
H,W,_ = camNormal.shape | |
normal_img = np.matmul(rot_c2w[None, :, :], camNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3]) | |
return normal_img | |
def worldNormal2camNormal(rot_w2c, normal_map_world): | |
H,W,_ = normal_map_world.shape | |
# normal_img = np.matmul(rot_w2c[None, :, :], worldNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3]) | |
# faster version | |
# Reshape the normal map into a 2D array where each row represents a normal vector | |
normal_map_flat = normal_map_world.reshape(-1, 3) | |
# Transform the normal vectors using the transformation matrix | |
normal_map_camera_flat = np.dot(normal_map_flat, rot_w2c.T) | |
# Reshape the transformed normal map back to its original shape | |
normal_map_camera = normal_map_camera_flat.reshape(normal_map_world.shape) | |
return normal_map_camera | |
def trans_normal(normal, RT_w2c, RT_w2c_target): | |
# normal_world = camNormal2worldNormal(np.linalg.inv(RT_w2c[:3,:3]), normal) | |
# normal_target_cam = worldNormal2camNormal(RT_w2c_target[:3,:3], normal_world) | |
relative_RT = np.matmul(RT_w2c_target[:3,:3], np.linalg.inv(RT_w2c[:3,:3])) | |
return worldNormal2camNormal(relative_RT[:3,:3], normal) | |
def trans_normal_complex(normal, RT_w2c, RT_w2c_rela_to_cond): | |
# camview -> world -> condview | |
normal_world = camNormal2worldNormal(np.linalg.inv(RT_w2c[:3,:3]), normal) | |
# debug_normal_world = normal2img(normal_world) | |
# relative_RT = np.matmul(RT_w2c_rela_to_cond[:3,:3], np.linalg.inv(RT_w2c[:3,:3])) | |
normal_target_cam = worldNormal2camNormal(RT_w2c_rela_to_cond[:3,:3], normal_world) | |
# normal_condview = normal2img(normal_target_cam) | |
return normal_target_cam | |
def img2normal(img): | |
return (img/255.)*2-1 | |
def normal2img(normal): | |
return np.uint8((normal*0.5+0.5)*255) | |
def norm_normalize(normal, dim=-1): | |
normal = normal/(np.linalg.norm(normal, axis=dim, keepdims=True)+1e-6) | |
return normal | |
def plot_grid_images(images, row, col, path=None): | |
import cv2 | |
""" | |
Args: | |
images: np.array [B, H, W, 3] | |
row: | |
col: | |
save_path: | |
Returns: | |
""" | |
images = images.detach().cpu().numpy() | |
assert row * col == images.shape[0] | |
images = np.vstack([np.hstack(images[r * col:(r + 1) * col]) for r in range(row)]) | |
if path: | |
cv2.imwrite(path, images[:,:,::-1] * 255) | |
return images |