Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import numpy as np | |
| import logging | |
| from copy import deepcopy | |
| from .utils.libkdtree import KDTree | |
| logger_py = logging.getLogger(__name__) | |
| def compute_iou(occ1, occ2): | |
| ''' Computes the Intersection over Union (IoU) value for two sets of | |
| occupancy values. | |
| Args: | |
| occ1 (tensor): first set of occupancy values | |
| occ2 (tensor): second set of occupancy values | |
| ''' | |
| occ1 = np.asarray(occ1) | |
| occ2 = np.asarray(occ2) | |
| # Put all data in second dimension | |
| # Also works for 1-dimensional data | |
| if occ1.ndim >= 2: | |
| occ1 = occ1.reshape(occ1.shape[0], -1) | |
| if occ2.ndim >= 2: | |
| occ2 = occ2.reshape(occ2.shape[0], -1) | |
| # Convert to boolean values | |
| occ1 = (occ1 >= 0.5) | |
| occ2 = (occ2 >= 0.5) | |
| # Compute IOU | |
| area_union = (occ1 | occ2).astype(np.float32).sum(axis=-1) | |
| area_intersect = (occ1 & occ2).astype(np.float32).sum(axis=-1) | |
| iou = (area_intersect / area_union) | |
| return iou | |
| def rgb2gray(rgb): | |
| ''' rgb of size B x h x w x 3 | |
| ''' | |
| r, g, b = rgb[:, :, :, 0], rgb[:, :, :, 1], rgb[:, :, :, 2] | |
| gray = 0.2989 * r + 0.5870 * g + 0.1140 * b | |
| return gray | |
| def sample_patch_points( | |
| batch_size, n_points, patch_size=1, image_resolution=(128, 128), continuous=True | |
| ): | |
| ''' Returns sampled points in the range [-1, 1]. | |
| Args: | |
| batch_size (int): required batch size | |
| n_points (int): number of points to sample | |
| patch_size (int): size of patch; if > 1, patches of size patch_size | |
| are sampled instead of individual points | |
| image_resolution (tuple): image resolution (required for calculating | |
| the pixel distances) | |
| continuous (bool): whether to sample continuously or only on pixel | |
| locations | |
| ''' | |
| assert (patch_size > 0) | |
| # Calculate step size for [-1, 1] that is equivalent to a pixel in | |
| # original resolution | |
| h_step = 1. / image_resolution[0] | |
| w_step = 1. / image_resolution[1] | |
| # Get number of patches | |
| patch_size_squared = patch_size**2 | |
| n_patches = int(n_points / patch_size_squared) | |
| if continuous: | |
| p = torch.rand(batch_size, n_patches, 2) # [0, 1] | |
| else: | |
| px = torch.randint(0, image_resolution[1], | |
| size=(batch_size, n_patches, 1)).float() / (image_resolution[1] - 1) | |
| py = torch.randint(0, image_resolution[0], | |
| size=(batch_size, n_patches, 1)).float() / (image_resolution[0] - 1) | |
| p = torch.cat([px, py], dim=-1) | |
| # Scale p to [0, (1 - (patch_size - 1) * step) ] | |
| p[:, :, 0] *= 1 - (patch_size - 1) * w_step | |
| p[:, :, 1] *= 1 - (patch_size - 1) * h_step | |
| # Add points | |
| patch_arange = torch.arange(patch_size) | |
| x_offset, y_offset = torch.meshgrid(patch_arange, patch_arange) | |
| patch_offsets = torch.stack([x_offset.reshape(-1), y_offset.reshape(-1)], | |
| dim=1).view(1, 1, -1, 2).repeat(batch_size, n_patches, 1, 1).float() | |
| patch_offsets[:, :, :, 0] *= w_step | |
| patch_offsets[:, :, :, 1] *= h_step | |
| # Add patch_offsets to points | |
| p = p.view(batch_size, n_patches, 1, 2) + patch_offsets | |
| # Scale to [-1, x] | |
| p = p * 2 - 1 | |
| p = p.view(batch_size, -1, 2) | |
| amax, amin = p.max(), p.min() | |
| assert (amax <= 1. and amin >= -1.) | |
| return p | |
| def get_proposal_points_in_unit_cube(ray0, ray_direction, padding=0.1, eps=1e-6, n_steps=40): | |
| ''' Returns n_steps equally spaced points inside the unit cube on the rays | |
| cast from ray0 with direction ray_direction. | |
| This function is used to get the ray marching points {p^ray_j} for a given | |
| camera position ray0 and | |
| a given ray direction ray_direction which goes from the camera_position to | |
| the pixel location. | |
| NOTE: The returned values d_proposal are the lengths of the ray: | |
| p^ray_j = ray0 + d_proposal_j * ray_direction | |
| Args: | |
| ray0 (tensor): Start positions of the rays | |
| ray_direction (tensor): Directions of rays | |
| padding (float): Padding which is applied to the unit cube | |
| eps (float): The epsilon value for numerical stability | |
| n_steps (int): number of steps | |
| ''' | |
| batch_size, n_pts, _ = ray0.shape | |
| device = ray0.device | |
| p_intervals, d_intervals, mask_inside_cube = \ | |
| check_ray_intersection_with_unit_cube(ray0, ray_direction, padding, | |
| eps) | |
| d_proposal = d_intervals[:, :, 0].unsqueeze(-1) + \ | |
| torch.linspace(0, 1, steps=n_steps).to(device).view(1, 1, -1) * \ | |
| (d_intervals[:, :, 1] - d_intervals[:, :, 0]).unsqueeze(-1) | |
| d_proposal = d_proposal.unsqueeze(-1) | |
| return d_proposal, mask_inside_cube | |
| def check_ray_intersection_with_unit_cube(ray0, ray_direction, padding=0.1, eps=1e-6, scale=2.0): | |
| ''' Checks if rays ray0 + d * ray_direction intersect with unit cube with | |
| padding padding. | |
| It returns the two intersection points as well as the sorted ray lengths d. | |
| Args: | |
| ray0 (tensor): Start positions of the rays | |
| ray_direction (tensor): Directions of rays | |
| padding (float): Padding which is applied to the unit cube | |
| eps (float): The epsilon value for numerical stability | |
| scale (float): cube size | |
| ''' | |
| batch_size, n_pts, _ = ray0.shape | |
| device = ray0.device | |
| # calculate intersections with unit cube (< . , . > is the dot product) | |
| # <n, x - p> = <n, ray0 + d * ray_direction - p_e> = 0 | |
| # d = - <n, ray0 - p_e> / <n, ray_direction> | |
| # Get points on plane p_e | |
| p_distance = (scale * 0.5) + padding / 2 | |
| p_e = torch.ones(batch_size, n_pts, 6).to(device) * p_distance | |
| p_e[:, :, 3:] *= -1. | |
| # Calculate the intersection points with given formula | |
| nominator = p_e - ray0.repeat(1, 1, 2) | |
| denominator = ray_direction.repeat(1, 1, 2) | |
| d_intersect = nominator / denominator | |
| p_intersect = ray0.unsqueeze(-2) + d_intersect.unsqueeze(-1) * \ | |
| ray_direction.unsqueeze(-2) | |
| # Calculate mask where points intersect unit cube | |
| p_mask_inside_cube = ( | |
| (p_intersect[:, :, :, 0] <= p_distance + eps) & | |
| (p_intersect[:, :, :, 1] <= p_distance + eps) & | |
| (p_intersect[:, :, :, 2] <= p_distance + eps) & | |
| (p_intersect[:, :, :, 0] >= -(p_distance + eps)) & | |
| (p_intersect[:, :, :, 1] >= -(p_distance + eps)) & | |
| (p_intersect[:, :, :, 2] >= -(p_distance + eps)) | |
| ).cpu() | |
| # Correct rays are these which intersect exactly 2 times | |
| mask_inside_cube = p_mask_inside_cube.sum(-1) == 2 | |
| # Get interval values for p's which are valid | |
| p_intervals = p_intersect[mask_inside_cube][p_mask_inside_cube[mask_inside_cube]].view(-1, 2, 3) | |
| p_intervals_batch = torch.zeros(batch_size, n_pts, 2, 3).to(device) | |
| p_intervals_batch[mask_inside_cube] = p_intervals | |
| # Calculate ray lengths for the interval points | |
| d_intervals_batch = torch.zeros(batch_size, n_pts, 2).to(device) | |
| norm_ray = torch.norm(ray_direction[mask_inside_cube], dim=-1) | |
| d_intervals_batch[mask_inside_cube] = torch.stack( | |
| [ | |
| torch.norm(p_intervals[:, 0] - ray0[mask_inside_cube], dim=-1) / norm_ray, | |
| torch.norm(p_intervals[:, 1] - ray0[mask_inside_cube], dim=-1) / norm_ray, | |
| ], | |
| dim=-1 | |
| ) | |
| # Sort the ray lengths | |
| d_intervals_batch, indices_sort = d_intervals_batch.sort() | |
| p_intervals_batch = p_intervals_batch[torch.arange(batch_size).view(-1, 1, 1), | |
| torch.arange(n_pts).view(1, -1, 1), indices_sort] | |
| return p_intervals_batch, d_intervals_batch, mask_inside_cube | |
| def intersect_camera_rays_with_unit_cube( | |
| pixels, camera_mat, world_mat, scale_mat, padding=0.1, eps=1e-6, use_ray_length_as_depth=True | |
| ): | |
| ''' Returns the intersection points of ray cast from camera origin to | |
| pixel points p on the image plane. | |
| The function returns the intersection points as well the depth values and | |
| a mask specifying which ray intersects the unit cube. | |
| Args: | |
| pixels (tensor): Pixel points on image plane (range [-1, 1]) | |
| camera_mat (tensor): camera matrix | |
| world_mat (tensor): world matrix | |
| scale_mat (tensor): scale matrix | |
| padding (float): Padding which is applied to the unit cube | |
| eps (float): The epsilon value for numerical stability | |
| ''' | |
| batch_size, n_points, _ = pixels.shape | |
| pixel_world = image_points_to_world(pixels, camera_mat, world_mat, scale_mat) | |
| camera_world = origin_to_world(n_points, camera_mat, world_mat, scale_mat) | |
| ray_vector = (pixel_world - camera_world) | |
| p_cube, d_cube, mask_cube = check_ray_intersection_with_unit_cube( | |
| camera_world, ray_vector, padding=padding, eps=eps | |
| ) | |
| if not use_ray_length_as_depth: | |
| p_cam = transform_to_camera_space( | |
| p_cube.view(batch_size, -1, 3), camera_mat, world_mat, scale_mat | |
| ).view(batch_size, n_points, -1, 3) | |
| d_cube = p_cam[:, :, :, -1] | |
| return p_cube, d_cube, mask_cube | |
| def arange_pixels(resolution=(128, 128), batch_size=1, image_range=(-1., 1.), subsample_to=None): | |
| ''' Arranges pixels for given resolution in range image_range. | |
| The function returns the unscaled pixel locations as integers and the | |
| scaled float values. | |
| Args: | |
| resolution (tuple): image resolution | |
| batch_size (int): batch size | |
| image_range (tuple): range of output points (default [-1, 1]) | |
| subsample_to (int): if integer and > 0, the points are randomly | |
| subsampled to this value | |
| ''' | |
| h, w = resolution | |
| n_points = resolution[0] * resolution[1] | |
| # Arrange pixel location in scale resolution | |
| pixel_locations = torch.meshgrid(torch.arange(0, w), torch.arange(0, h)) | |
| pixel_locations = torch.stack([pixel_locations[0], pixel_locations[1]], | |
| dim=-1).long().view(1, -1, 2).repeat(batch_size, 1, 1) | |
| pixel_scaled = pixel_locations.clone().float() | |
| # Shift and scale points to match image_range | |
| scale = (image_range[1] - image_range[0]) | |
| loc = scale / 2 | |
| pixel_scaled[:, :, 0] = scale * pixel_scaled[:, :, 0] / (w - 1) - loc | |
| pixel_scaled[:, :, 1] = scale * pixel_scaled[:, :, 1] / (h - 1) - loc | |
| # Subsample points if subsample_to is not None and > 0 | |
| if (subsample_to is not None and subsample_to > 0 and subsample_to < n_points): | |
| idx = np.random.choice(pixel_scaled.shape[1], size=(subsample_to, ), replace=False) | |
| pixel_scaled = pixel_scaled[:, idx] | |
| pixel_locations = pixel_locations[:, idx] | |
| return pixel_locations, pixel_scaled | |
| def to_pytorch(tensor, return_type=False): | |
| ''' Converts input tensor to pytorch. | |
| Args: | |
| tensor (tensor): Numpy or Pytorch tensor | |
| return_type (bool): whether to return input type | |
| ''' | |
| is_numpy = False | |
| if type(tensor) == np.ndarray: | |
| tensor = torch.from_numpy(tensor) | |
| is_numpy = True | |
| tensor = tensor.clone() | |
| if return_type: | |
| return tensor, is_numpy | |
| return tensor | |
| def get_mask(tensor): | |
| ''' Returns mask of non-illegal values for tensor. | |
| Args: | |
| tensor (tensor): Numpy or Pytorch tensor | |
| ''' | |
| tensor, is_numpy = to_pytorch(tensor, True) | |
| mask = ((abs(tensor) != np.inf) & (torch.isnan(tensor) == False)) | |
| mask = mask.to(torch.bool) | |
| if is_numpy: | |
| mask = mask.numpy() | |
| return mask | |
| def transform_mesh(mesh, transform): | |
| ''' Transforms a mesh with given transformation. | |
| Args: | |
| mesh (trimesh mesh): mesh | |
| transform (tensor): transformation matrix of size 4 x 4 | |
| ''' | |
| mesh = deepcopy(mesh) | |
| v = np.asarray(mesh.vertices).astype(np.float32) | |
| v_transformed = transform_pointcloud(v, transform) | |
| mesh.vertices = v_transformed | |
| return mesh | |
| def transform_pointcloud(pointcloud, transform): | |
| ''' Transforms a point cloud with given transformation. | |
| Args: | |
| pointcloud (tensor): tensor of size N x 3 | |
| transform (tensor): transformation of size 4 x 4 | |
| ''' | |
| assert (transform.shape == (4, 4) and pointcloud.shape[-1] == 3) | |
| pcl, is_numpy = to_pytorch(pointcloud, True) | |
| transform = to_pytorch(transform) | |
| # Transform point cloud to homogen coordinate system | |
| pcl_hom = torch.cat([pcl, torch.ones(pcl.shape[0], 1)], dim=-1).transpose(1, 0) | |
| # Apply transformation to point cloud | |
| pcl_hom_transformed = transform @ pcl_hom | |
| # Transform back to 3D coordinates | |
| pcl_out = pcl_hom_transformed[:3].transpose(1, 0) | |
| if is_numpy: | |
| pcl_out = pcl_out.numpy() | |
| return pcl_out | |
| def transform_points_batch(p, transform): | |
| ''' Transform points tensor with given transform. | |
| Args: | |
| p (tensor): tensor of size B x N x 3 | |
| transform (tensor): transformation of size B x 4 x 4 | |
| ''' | |
| device = p.device | |
| assert (transform.shape[1:] == (4, 4) and p.shape[-1] == 3 and p.shape[0] == transform.shape[0]) | |
| # Transform points to homogen coordinates | |
| pcl_hom = torch.cat([p, torch.ones(p.shape[0], p.shape[1], 1).to(device)], | |
| dim=-1).transpose(2, 1) | |
| # Apply transformation | |
| pcl_hom_transformed = transform @ pcl_hom | |
| # Transform back to 3D coordinates | |
| pcl_out = pcl_hom_transformed[:, :3].transpose(2, 1) | |
| return pcl_out | |
| def get_tensor_values( | |
| tensor, p, grid_sample=True, mode='nearest', with_mask=False, squeeze_channel_dim=False | |
| ): | |
| ''' | |
| Returns values from tensor at given location p. | |
| Args: | |
| tensor (tensor): tensor of size B x C x H x W | |
| p (tensor): position values scaled between [-1, 1] and | |
| of size B x N x 2 | |
| grid_sample (boolean): whether to use grid sampling | |
| mode (string): what mode to perform grid sampling in | |
| with_mask (bool): whether to return the mask for invalid values | |
| squeeze_channel_dim (bool): whether to squeeze the channel dimension | |
| (only applicable to 1D data) | |
| ''' | |
| p = to_pytorch(p) | |
| tensor, is_numpy = to_pytorch(tensor, True) | |
| batch_size, _, h, w = tensor.shape | |
| if grid_sample: | |
| p = p.unsqueeze(1) | |
| values = torch.nn.functional.grid_sample(tensor, p, mode=mode) | |
| values = values.squeeze(2) | |
| values = values.permute(0, 2, 1) | |
| else: | |
| p[:, :, 0] = (p[:, :, 0] + 1) * (w) / 2 | |
| p[:, :, 1] = (p[:, :, 1] + 1) * (h) / 2 | |
| p = p.long() | |
| values = tensor[torch.arange(batch_size).unsqueeze(-1), :, p[:, :, 1], p[:, :, 0]] | |
| if with_mask: | |
| mask = get_mask(values) | |
| if squeeze_channel_dim: | |
| mask = mask.squeeze(-1) | |
| if is_numpy: | |
| mask = mask.numpy() | |
| if squeeze_channel_dim: | |
| values = values.squeeze(-1) | |
| if is_numpy: | |
| values = values.numpy() | |
| if with_mask: | |
| return values, mask | |
| return values | |
| def transform_to_world(pixels, depth, camera_mat, world_mat, scale_mat, invert=True): | |
| ''' Transforms pixel positions p with given depth value d to world coordinates. | |
| Args: | |
| pixels (tensor): pixel tensor of size B x N x 2 | |
| depth (tensor): depth tensor of size B x N x 1 | |
| camera_mat (tensor): camera matrix | |
| world_mat (tensor): world matrix | |
| scale_mat (tensor): scale matrix | |
| invert (bool): whether to invert matrices (default: true) | |
| ''' | |
| assert (pixels.shape[-1] == 2) | |
| # Convert to pytorch | |
| pixels, is_numpy = to_pytorch(pixels, True) | |
| depth = to_pytorch(depth) | |
| camera_mat = to_pytorch(camera_mat) | |
| world_mat = to_pytorch(world_mat) | |
| scale_mat = to_pytorch(scale_mat) | |
| # Invert camera matrices | |
| if invert: | |
| camera_mat = torch.inverse(camera_mat) | |
| world_mat = torch.inverse(world_mat) | |
| scale_mat = torch.inverse(scale_mat) | |
| # Transform pixels to homogen coordinates | |
| pixels = pixels.permute(0, 2, 1) | |
| pixels = torch.cat([pixels, torch.ones_like(pixels)], dim=1) | |
| # Project pixels into camera space | |
| pixels[:, :3] = pixels[:, :3] * depth.permute(0, 2, 1) | |
| # Transform pixels to world space | |
| p_world = scale_mat @ world_mat @ camera_mat @ pixels | |
| # Transform p_world back to 3D coordinates | |
| p_world = p_world[:, :3].permute(0, 2, 1) | |
| if is_numpy: | |
| p_world = p_world.numpy() | |
| return p_world | |
| def transform_to_camera_space(p_world, camera_mat, world_mat, scale_mat): | |
| ''' Transforms world points to camera space. | |
| Args: | |
| p_world (tensor): world points tensor of size B x N x 3 | |
| camera_mat (tensor): camera matrix | |
| world_mat (tensor): world matrix | |
| scale_mat (tensor): scale matrix | |
| ''' | |
| batch_size, n_p, _ = p_world.shape | |
| device = p_world.device | |
| # Transform world points to homogen coordinates | |
| p_world = torch.cat([p_world, torch.ones(batch_size, n_p, 1).to(device)], | |
| dim=-1).permute(0, 2, 1) | |
| # Apply matrices to transform p_world to camera space | |
| p_cam = camera_mat @ world_mat @ scale_mat @ p_world | |
| # Transform points back to 3D coordinates | |
| p_cam = p_cam[:, :3].permute(0, 2, 1) | |
| return p_cam | |
| def origin_to_world(n_points, camera_mat, world_mat, scale_mat, invert=True): | |
| ''' Transforms origin (camera location) to world coordinates. | |
| Args: | |
| n_points (int): how often the transformed origin is repeated in the | |
| form (batch_size, n_points, 3) | |
| camera_mat (tensor): camera matrix | |
| world_mat (tensor): world matrix | |
| scale_mat (tensor): scale matrix | |
| invert (bool): whether to invert the matrices (default: true) | |
| ''' | |
| batch_size = camera_mat.shape[0] | |
| device = camera_mat.device | |
| # Create origin in homogen coordinates | |
| p = torch.zeros(batch_size, 4, n_points).to(device) | |
| p[:, -1] = 1. | |
| # Invert matrices | |
| if invert: | |
| camera_mat = torch.inverse(camera_mat) | |
| world_mat = torch.inverse(world_mat) | |
| scale_mat = torch.inverse(scale_mat) | |
| # Apply transformation | |
| p_world = scale_mat @ world_mat @ camera_mat @ p | |
| # Transform points back to 3D coordinates | |
| p_world = p_world[:, :3].permute(0, 2, 1) | |
| return p_world | |
| def image_points_to_world(image_points, camera_mat, world_mat, scale_mat, invert=True): | |
| ''' Transforms points on image plane to world coordinates. | |
| In contrast to transform_to_world, no depth value is needed as points on | |
| the image plane have a fixed depth of 1. | |
| Args: | |
| image_points (tensor): image points tensor of size B x N x 2 | |
| camera_mat (tensor): camera matrix | |
| world_mat (tensor): world matrix | |
| scale_mat (tensor): scale matrix | |
| invert (bool): whether to invert matrices (default: true) | |
| ''' | |
| batch_size, n_pts, dim = image_points.shape | |
| assert (dim == 2) | |
| device = image_points.device | |
| d_image = torch.ones(batch_size, n_pts, 1).to(device) | |
| return transform_to_world( | |
| image_points, d_image, camera_mat, world_mat, scale_mat, invert=invert | |
| ) | |
| def check_weights(params): | |
| ''' Checks weights for illegal values. | |
| Args: | |
| params (tensor): parameter tensor | |
| ''' | |
| for k, v in params.items(): | |
| if torch.isnan(v).any(): | |
| logger_py.warn('NaN Values detected in model weight %s.' % k) | |
| def check_tensor(tensor, tensorname='', input_tensor=None): | |
| ''' Checks tensor for illegal values. | |
| Args: | |
| tensor (tensor): tensor | |
| tensorname (string): name of tensor | |
| input_tensor (tensor): previous input | |
| ''' | |
| if torch.isnan(tensor).any(): | |
| logger_py.warn('Tensor %s contains nan values.' % tensorname) | |
| if input_tensor is not None: | |
| logger_py.warn(f'Input was: {input_tensor}') | |
| def get_prob_from_logits(logits): | |
| ''' Returns probabilities for logits | |
| Args: | |
| logits (tensor): logits | |
| ''' | |
| odds = np.exp(logits) | |
| probs = odds / (1 + odds) | |
| return probs | |
| def get_logits_from_prob(probs, eps=1e-4): | |
| ''' Returns logits for probabilities. | |
| Args: | |
| probs (tensor): probability tensor | |
| eps (float): epsilon value for numerical stability | |
| ''' | |
| probs = np.clip(probs, a_min=eps, a_max=1 - eps) | |
| logits = np.log(probs / (1 - probs)) | |
| return logits | |
| def chamfer_distance(points1, points2, use_kdtree=True, give_id=False): | |
| ''' Returns the chamfer distance for the sets of points. | |
| Args: | |
| points1 (numpy array): first point set | |
| points2 (numpy array): second point set | |
| use_kdtree (bool): whether to use a kdtree | |
| give_id (bool): whether to return the IDs of nearest points | |
| ''' | |
| if use_kdtree: | |
| return chamfer_distance_kdtree(points1, points2, give_id=give_id) | |
| else: | |
| return chamfer_distance_naive(points1, points2) | |
| def chamfer_distance_naive(points1, points2): | |
| ''' Naive implementation of the Chamfer distance. | |
| Args: | |
| points1 (numpy array): first point set | |
| points2 (numpy array): second point set | |
| ''' | |
| assert (points1.size() == points2.size()) | |
| batch_size, T, _ = points1.size() | |
| points1 = points1.view(batch_size, T, 1, 3) | |
| points2 = points2.view(batch_size, 1, T, 3) | |
| distances = (points1 - points2).pow(2).sum(-1) | |
| chamfer1 = distances.min(dim=1)[0].mean(dim=1) | |
| chamfer2 = distances.min(dim=2)[0].mean(dim=1) | |
| chamfer = chamfer1 + chamfer2 | |
| return chamfer | |
| def chamfer_distance_kdtree(points1, points2, give_id=False): | |
| ''' KD-tree based implementation of the Chamfer distance. | |
| Args: | |
| points1 (numpy array): first point set | |
| points2 (numpy array): second point set | |
| give_id (bool): whether to return the IDs of the nearest points | |
| ''' | |
| # Points have size batch_size x T x 3 | |
| batch_size = points1.size(0) | |
| # First convert points to numpy | |
| points1_np = points1.detach().cpu().numpy() | |
| points2_np = points2.detach().cpu().numpy() | |
| # Get list of nearest neighbors indices | |
| idx_nn_12, _ = get_nearest_neighbors_indices_batch(points1_np, points2_np) | |
| idx_nn_12 = torch.LongTensor(idx_nn_12).to(points1.device) | |
| # Expands it as batch_size x 1 x 3 | |
| idx_nn_12_expand = idx_nn_12.view(batch_size, -1, 1).expand_as(points1) | |
| # Get list of nearest neighbors indices | |
| idx_nn_21, _ = get_nearest_neighbors_indices_batch(points2_np, points1_np) | |
| idx_nn_21 = torch.LongTensor(idx_nn_21).to(points1.device) | |
| # Expands it as batch_size x T x 3 | |
| idx_nn_21_expand = idx_nn_21.view(batch_size, -1, 1).expand_as(points2) | |
| # Compute nearest neighbors in points2 to points in points1 | |
| # points_12[i, j, k] = points2[i, idx_nn_12_expand[i, j, k], k] | |
| points_12 = torch.gather(points2, dim=1, index=idx_nn_12_expand) | |
| # Compute nearest neighbors in points1 to points in points2 | |
| # points_21[i, j, k] = points2[i, idx_nn_21_expand[i, j, k], k] | |
| points_21 = torch.gather(points1, dim=1, index=idx_nn_21_expand) | |
| # Compute chamfer distance | |
| chamfer1 = (points1 - points_12).pow(2).sum(2).mean(1) | |
| chamfer2 = (points2 - points_21).pow(2).sum(2).mean(1) | |
| # Take sum | |
| chamfer = chamfer1 + chamfer2 | |
| # If required, also return nearest neighbors | |
| if give_id: | |
| return chamfer1, chamfer2, idx_nn_12, idx_nn_21 | |
| return chamfer | |
| def get_nearest_neighbors_indices_batch(points_src, points_tgt, k=1): | |
| ''' Returns the nearest neighbors for point sets batchwise. | |
| Args: | |
| points_src (numpy array): source points | |
| points_tgt (numpy array): target points | |
| k (int): number of nearest neighbors to return | |
| ''' | |
| indices = [] | |
| distances = [] | |
| for (p1, p2) in zip(points_src, points_tgt): | |
| kdtree = KDTree(p2) | |
| dist, idx = kdtree.query(p1, k=k) | |
| indices.append(idx) | |
| distances.append(dist) | |
| return indices, distances | |
| def normalize_imagenet(x): | |
| ''' Normalize input images according to ImageNet standards. | |
| Args: | |
| x (tensor): input images | |
| ''' | |
| x = x.clone() | |
| x[:, 0] = (x[:, 0] - 0.485) / 0.229 | |
| x[:, 1] = (x[:, 1] - 0.456) / 0.224 | |
| x[:, 2] = (x[:, 2] - 0.406) / 0.225 | |
| return x | |
| def make_3d_grid(bb_min, bb_max, shape): | |
| ''' Makes a 3D grid. | |
| Args: | |
| bb_min (tuple): bounding box minimum | |
| bb_max (tuple): bounding box maximum | |
| shape (tuple): output shape | |
| ''' | |
| size = shape[0] * shape[1] * shape[2] | |
| pxs = torch.linspace(bb_min[0], bb_max[0], shape[0]) | |
| pys = torch.linspace(bb_min[1], bb_max[1], shape[1]) | |
| pzs = torch.linspace(bb_min[2], bb_max[2], shape[2]) | |
| pxs = pxs.view(-1, 1, 1).expand(*shape).contiguous().view(size) | |
| pys = pys.view(1, -1, 1).expand(*shape).contiguous().view(size) | |
| pzs = pzs.view(1, 1, -1).expand(*shape).contiguous().view(size) | |
| p = torch.stack([pxs, pys, pzs], dim=1) | |
| return p | |
| def get_occupancy_loss_points( | |
| pixels, | |
| camera_mat, | |
| world_mat, | |
| scale_mat, | |
| depth_image=None, | |
| use_cube_intersection=True, | |
| occupancy_random_normal=False, | |
| depth_range=[0, 2.4] | |
| ): | |
| ''' Returns 3D points for occupancy loss. | |
| Args: | |
| pixels (tensor): sampled pixels in range [-1, 1] | |
| camera_mat (tensor): camera matrix | |
| world_mat (tensor): world matrix | |
| scale_mat (tensor): scale matrix | |
| depth_image tensor): if not None, these depth values are used for | |
| initialization (e.g. depth or visual hull depth) | |
| use_cube_intersection (bool): whether to check unit cube intersection | |
| occupancy_random_normal (bool): whether to sample from a Normal | |
| distribution instead of a uniform one | |
| depth_range (float): depth range; important when no cube | |
| intersection is used | |
| ''' | |
| device = pixels.device | |
| batch_size, n_points, _ = pixels.shape | |
| if use_cube_intersection: | |
| _, d_cube_intersection, mask_cube = \ | |
| intersect_camera_rays_with_unit_cube( | |
| pixels, camera_mat, world_mat, scale_mat, padding=0., | |
| use_ray_length_as_depth=False) | |
| d_cube = d_cube_intersection[mask_cube] | |
| d_occupancy = torch.rand(batch_size, n_points).to(device) * depth_range[1] | |
| if use_cube_intersection: | |
| d_occupancy[mask_cube] = d_cube[:, 0] + \ | |
| torch.rand(d_cube.shape[0]).to( | |
| device) * (d_cube[:, 1] - d_cube[:, 0]) | |
| if occupancy_random_normal: | |
| d_occupancy = torch.randn(batch_size, n_points).to(device) \ | |
| * (depth_range[1] / 8) + depth_range[1] / 2 | |
| if use_cube_intersection: | |
| mean_cube = d_cube.sum(-1) / 2 | |
| std_cube = (d_cube[:, 1] - d_cube[:, 0]) / 8 | |
| d_occupancy[mask_cube] = mean_cube + \ | |
| torch.randn(mean_cube.shape[0]).to(device) * std_cube | |
| if depth_image is not None: | |
| depth_gt, mask_gt_depth = get_tensor_values( | |
| depth_image, pixels, squeeze_channel_dim=True, with_mask=True | |
| ) | |
| d_occupancy[mask_gt_depth] = depth_gt[mask_gt_depth] | |
| p_occupancy = transform_to_world( | |
| pixels, d_occupancy.unsqueeze(-1), camera_mat, world_mat, scale_mat | |
| ) | |
| return p_occupancy | |
| def get_freespace_loss_points( | |
| pixels, camera_mat, world_mat, scale_mat, use_cube_intersection=True, depth_range=[0, 2.4] | |
| ): | |
| ''' Returns 3D points for freespace loss. | |
| Args: | |
| pixels (tensor): sampled pixels in range [-1, 1] | |
| camera_mat (tensor): camera matrix | |
| world_mat (tensor): world matrix | |
| scale_mat (tensor): scale matrix | |
| use_cube_intersection (bool): whether to check unit cube intersection | |
| depth_range (float): depth range; important when no cube | |
| intersection is used | |
| ''' | |
| device = pixels.device | |
| batch_size, n_points, _ = pixels.shape | |
| d_freespace = torch.rand(batch_size, n_points).to(device) * \ | |
| depth_range[1] | |
| if use_cube_intersection: | |
| _, d_cube_intersection, mask_cube = \ | |
| intersect_camera_rays_with_unit_cube( | |
| pixels, camera_mat, world_mat, scale_mat, | |
| use_ray_length_as_depth=False) | |
| d_cube = d_cube_intersection[mask_cube] | |
| d_freespace[mask_cube] = d_cube[:, 0] + \ | |
| torch.rand(d_cube.shape[0]).to( | |
| device) * (d_cube[:, 1] - d_cube[:, 0]) | |
| p_freespace = transform_to_world( | |
| pixels, d_freespace.unsqueeze(-1), camera_mat, world_mat, scale_mat | |
| ) | |
| return p_freespace | |
| def normalize_tensor(tensor, min_norm=1e-5, feat_dim=-1): | |
| ''' Normalizes the tensor. | |
| Args: | |
| tensor (tensor): tensor | |
| min_norm (float): minimum norm for numerical stability | |
| feat_dim (int): feature dimension in tensor (default: -1) | |
| ''' | |
| norm_tensor = torch.clamp(torch.norm(tensor, dim=feat_dim, keepdim=True), min=min_norm) | |
| normed_tensor = tensor / norm_tensor | |
| return normed_tensor | |