Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| Copyright (c) Microsoft Corporation. | |
| Licensed under the MIT license. | |
| """ | |
| from __future__ import absolute_import, division, print_function, unicode_literals | |
| import logging | |
| import math | |
| import os | |
| import code | |
| import torch | |
| from torch import nn | |
| from .transformers.bert.modeling_bert import BertPreTrainedModel, BertEmbeddings, BertPooler, BertIntermediate, BertOutput, BertSelfOutput | |
| # import src.modeling.data.config as cfg | |
| # from src.modeling._gcnn import GraphConvolution, GraphResBlock | |
| from .transformers.bert.modeling_utils import prune_linear_layer | |
| LayerNormClass = torch.nn.LayerNorm | |
| BertLayerNorm = torch.nn.LayerNorm | |
| from .transformers.bert import BertConfig | |
| class BertSelfAttention(nn.Module): | |
| def __init__(self, config): | |
| super(BertSelfAttention, self).__init__() | |
| if config.hidden_size % config.num_attention_heads != 0: | |
| raise ValueError( | |
| "The hidden size (%d) is not a multiple of the number of attention " | |
| "heads (%d)" % (config.hidden_size, config.num_attention_heads) | |
| ) | |
| self.output_attentions = config.output_attentions | |
| self.num_attention_heads = config.num_attention_heads | |
| self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
| self.all_head_size = self.num_attention_heads * self.attention_head_size | |
| self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
| def transpose_for_scores(self, x): | |
| new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
| x = x.view(*new_x_shape) | |
| return x.permute(0, 2, 1, 3) | |
| def forward(self, hidden_states, attention_mask, head_mask=None, history_state=None): | |
| if history_state is not None: | |
| raise | |
| x_states = torch.cat([history_state, hidden_states], dim=1) | |
| mixed_query_layer = self.query(hidden_states) | |
| mixed_key_layer = self.key(x_states) | |
| mixed_value_layer = self.value(x_states) | |
| else: | |
| mixed_query_layer = self.query(hidden_states) | |
| mixed_key_layer = self.key(hidden_states) | |
| mixed_value_layer = self.value(hidden_states) | |
| # print('mixed_query_layer', mixed_query_layer.shape, mixed_key_layer.shape, mixed_value_layer.shape) | |
| query_layer = self.transpose_for_scores(mixed_query_layer) | |
| key_layer = self.transpose_for_scores(mixed_key_layer) | |
| value_layer = self.transpose_for_scores(mixed_value_layer) | |
| # print('query_layer', query_layer.shape, key_layer.shape, value_layer.shape) | |
| # Take the dot product between "query" and "key" to get the raw attention scores. | |
| attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
| attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
| # Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
| attention_scores = attention_scores + attention_mask | |
| # Normalize the attention scores to probabilities. | |
| attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
| # This is actually dropping out entire tokens to attend to, which might | |
| # seem a bit unusual, but is taken from the original Transformer paper. | |
| attention_probs = self.dropout(attention_probs) | |
| # Mask heads if we want to | |
| if head_mask is not None: | |
| raise | |
| attention_probs = attention_probs * head_mask | |
| context_layer = torch.matmul(attention_probs, value_layer) | |
| context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
| new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size, ) | |
| context_layer = context_layer.view(*new_context_layer_shape) | |
| outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer, ) | |
| return outputs | |
| class BertAttention(nn.Module): | |
| def __init__(self, config): | |
| super(BertAttention, self).__init__() | |
| self.self = BertSelfAttention(config) | |
| self.output = BertSelfOutput(config) | |
| def prune_heads(self, heads): | |
| if len(heads) == 0: | |
| return | |
| mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size) | |
| for head in heads: | |
| mask[head] = 0 | |
| mask = mask.view(-1).contiguous().eq(1) | |
| index = torch.arange(len(mask))[mask].long() | |
| # Prune linear layers | |
| self.self.query = prune_linear_layer(self.self.query, index) | |
| self.self.key = prune_linear_layer(self.self.key, index) | |
| self.self.value = prune_linear_layer(self.self.value, index) | |
| self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
| # Update hyper params | |
| self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
| self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
| def forward(self, input_tensor, attention_mask, head_mask=None, history_state=None): | |
| self_outputs = self.self(input_tensor, attention_mask, head_mask, history_state) | |
| attention_output = self.output(self_outputs[0], input_tensor) | |
| outputs = (attention_output, ) + self_outputs[1:] # add attentions if we output them | |
| return outputs | |
| class AttLayer(nn.Module): | |
| def __init__(self, config): | |
| super(AttLayer, self).__init__() | |
| self.attention = BertAttention(config) | |
| self.intermediate = BertIntermediate(config) | |
| self.output = BertOutput(config) | |
| def MHA(self, hidden_states, attention_mask, head_mask=None, history_state=None): | |
| attention_outputs = self.attention(hidden_states, attention_mask, head_mask, history_state) | |
| attention_output = attention_outputs[0] | |
| # print('attention_output', hidden_states.shape, attention_output.shape) | |
| intermediate_output = self.intermediate(attention_output) | |
| # print('intermediate_output', intermediate_output.shape) | |
| layer_output = self.output(intermediate_output, attention_output) | |
| # print('layer_output', layer_output.shape) | |
| outputs = (layer_output, ) + attention_outputs[1:] # add attentions if we output them | |
| return outputs | |
| def forward(self, hidden_states, attention_mask, head_mask=None, history_state=None): | |
| return self.MHA(hidden_states, attention_mask, head_mask, history_state) | |
| class AttEncoder(nn.Module): | |
| def __init__(self, config): | |
| super(AttEncoder, self).__init__() | |
| self.output_attentions = config.output_attentions | |
| self.output_hidden_states = config.output_hidden_states | |
| self.layer = nn.ModuleList([AttLayer(config) for _ in range(config.num_hidden_layers)]) | |
| def forward(self, hidden_states, attention_mask, head_mask=None, encoder_history_states=None): | |
| all_hidden_states = () | |
| all_attentions = () | |
| for i, layer_module in enumerate(self.layer): | |
| if self.output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states, ) | |
| history_state = None if encoder_history_states is None else encoder_history_states[i] | |
| layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i], history_state) | |
| hidden_states = layer_outputs[0] | |
| if self.output_attentions: | |
| all_attentions = all_attentions + (layer_outputs[1], ) | |
| # Add last layer | |
| if self.output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states, ) | |
| outputs = (hidden_states, ) | |
| if self.output_hidden_states: | |
| outputs = outputs + (all_hidden_states, ) | |
| if self.output_attentions: | |
| outputs = outputs + (all_attentions, ) | |
| return outputs # outputs, (hidden states), (attentions) | |
| class EncoderBlock(BertPreTrainedModel): | |
| def __init__(self, config): | |
| super(EncoderBlock, self).__init__(config) | |
| self.config = config | |
| # self.embeddings = BertEmbeddings(config) | |
| self.encoder = AttEncoder(config) | |
| # self.pooler = BertPooler(config) | |
| self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) | |
| self.img_dim = config.img_feature_dim | |
| try: | |
| self.use_img_layernorm = config.use_img_layernorm | |
| except: | |
| self.use_img_layernorm = None | |
| self.img_embedding = nn.Linear(self.img_dim, self.config.hidden_size, bias=True) | |
| # self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| if self.use_img_layernorm: | |
| self.LayerNorm = LayerNormClass(config.hidden_size, eps=config.img_layer_norm_eps) | |
| self.apply(self.init_weights) | |
| def _prune_heads(self, heads_to_prune): | |
| """ Prunes heads of the model. | |
| heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
| See base class PreTrainedModel | |
| """ | |
| for layer, heads in heads_to_prune.items(): | |
| self.encoder.layer[layer].attention.prune_heads(heads) | |
| def forward( | |
| self, | |
| img_feats, | |
| input_ids=None, | |
| token_type_ids=None, | |
| attention_mask=None, | |
| position_ids=None, | |
| head_mask=None | |
| ): | |
| batch_size = len(img_feats) | |
| seq_length = len(img_feats[0]) | |
| input_ids = torch.zeros([batch_size, seq_length], dtype=torch.long).to(img_feats.device) | |
| if position_ids is None: | |
| position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) | |
| position_ids = position_ids.unsqueeze(0).expand_as(input_ids) | |
| # print('-------------------') | |
| # print('position_ids', seq_length, position_ids.shape) | |
| # 494 torch.Size([2, 494]) | |
| position_embeddings = self.position_embeddings(position_ids) | |
| # print('position_embeddings', position_embeddings.shape, self.config.max_position_embeddings, self.config.hidden_size) | |
| # torch.Size([2, 494, 1024]) 512 1024 | |
| # torch.Size([2, 494, 256]) 512 256 | |
| if attention_mask is None: | |
| attention_mask = torch.ones_like(input_ids) | |
| else: | |
| raise | |
| if token_type_ids is None: | |
| token_type_ids = torch.zeros_like(input_ids) | |
| else: | |
| raise | |
| if attention_mask.dim() == 2: | |
| extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
| elif attention_mask.dim() == 3: | |
| extended_attention_mask = attention_mask.unsqueeze(1) | |
| else: | |
| raise NotImplementedError | |
| # extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |
| extended_attention_mask = extended_attention_mask.to( | |
| dtype=img_feats.dtype | |
| ) # fp16 compatibility | |
| extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
| if head_mask is not None: | |
| raise | |
| if head_mask.dim() == 1: | |
| head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
| head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) | |
| elif head_mask.dim() == 2: | |
| head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze( | |
| -1 | |
| ) # We can specify head_mask for each layer | |
| head_mask = head_mask.to( | |
| dtype=next(self.parameters()).dtype | |
| ) # switch to fload if need + fp16 compatibility | |
| else: | |
| head_mask = [None] * self.config.num_hidden_layers | |
| # Project input token features to have spcified hidden size | |
| # print('img_feats', img_feats.shape) # torch.Size([2, 494, 2051]) | |
| img_embedding_output = self.img_embedding(img_feats) | |
| # print('img_embedding_output', img_embedding_output.shape) # torch.Size([2, 494, 1024]) | |
| # We empirically observe that adding an additional learnable position embedding leads to more stable training | |
| embeddings = position_embeddings + img_embedding_output | |
| if self.use_img_layernorm: | |
| embeddings = self.LayerNorm(embeddings) | |
| # embeddings = self.dropout(embeddings) | |
| # print('extended_attention_mask', extended_attention_mask.shape) # torch.Size([2, 1, 1, 494]) | |
| encoder_outputs = self.encoder(embeddings, extended_attention_mask, head_mask=head_mask) | |
| sequence_output = encoder_outputs[0] | |
| outputs = (sequence_output, ) | |
| if self.config.output_hidden_states: | |
| all_hidden_states = encoder_outputs[1] | |
| outputs = outputs + (all_hidden_states, ) | |
| if self.config.output_attentions: | |
| all_attentions = encoder_outputs[-1] | |
| outputs = outputs + (all_attentions, ) | |
| return outputs | |
| def get_att_block( | |
| img_feature_dim=2048, | |
| output_feat_dim=512, | |
| hidden_feat_dim=1024, | |
| num_attention_heads=4, | |
| num_hidden_layers=1 | |
| ): | |
| config_class = BertConfig | |
| config = config_class.from_pretrained('lib/pymafx/models/transformers/bert/bert-base-uncased/') | |
| interm_size_scale = 2 | |
| config.output_attentions = False | |
| # config.hidden_dropout_prob = args.drop_out | |
| config.img_feature_dim = img_feature_dim | |
| # config.output_feature_dim = output_feat_dim | |
| config.hidden_size = hidden_feat_dim | |
| config.intermediate_size = int(config.hidden_size * interm_size_scale) | |
| config.num_hidden_layers = num_hidden_layers | |
| config.num_attention_heads = num_attention_heads | |
| config.max_position_embeddings = 900 | |
| # init a transformer encoder and append it to a list | |
| assert config.hidden_size % config.num_attention_heads == 0 | |
| att_model = EncoderBlock(config=config) | |
| return att_model | |
| class Graphormer(BertPreTrainedModel): | |
| ''' | |
| The archtecture of a transformer encoder block we used in Graphormer | |
| ''' | |
| def __init__(self, config): | |
| super(Graphormer, self).__init__(config) | |
| self.config = config | |
| self.bert = EncoderBlock(config) | |
| self.cls_head = nn.Linear(config.hidden_size, self.config.output_feature_dim) | |
| self.residual = nn.Linear(config.img_feature_dim, self.config.output_feature_dim) | |
| self.apply(self.init_weights) | |
| def forward( | |
| self, | |
| img_feats, | |
| input_ids=None, | |
| token_type_ids=None, | |
| attention_mask=None, | |
| masked_lm_labels=None, | |
| next_sentence_label=None, | |
| position_ids=None, | |
| head_mask=None | |
| ): | |
| ''' | |
| # self.bert has three outputs | |
| # predictions[0]: output tokens | |
| # predictions[1]: all_hidden_states, if enable "self.config.output_hidden_states" | |
| # predictions[2]: attentions, if enable "self.config.output_attentions" | |
| ''' | |
| predictions = self.bert( | |
| img_feats=img_feats, | |
| input_ids=input_ids, | |
| position_ids=position_ids, | |
| token_type_ids=token_type_ids, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask | |
| ) | |
| # We use "self.cls_head" to perform dimensionality reduction. We don't use it for classification. | |
| pred_score = self.cls_head(predictions[0]) | |
| res_img_feats = self.residual(img_feats) | |
| pred_score = pred_score + res_img_feats | |
| # print('pred_score', pred_score.shape) | |
| if self.config.output_attentions and self.config.output_hidden_states: | |
| return pred_score, predictions[1], predictions[-1] | |
| else: | |
| return pred_score | |