Spaces:
Sleeping
Sleeping
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import os | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import UNet2DConditionLoadersMixin | |
from diffusers.utils import BaseOutput, logging | |
from diffusers.models.activations import get_activation | |
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor | |
from diffusers.models.embeddings import ( | |
GaussianFourierProjection, | |
ImageHintTimeEmbedding, | |
ImageProjection, | |
ImageTimeEmbedding, | |
TextImageProjection, | |
TextImageTimeEmbedding, | |
TextTimeEmbedding, | |
TimestepEmbedding, | |
Timesteps, | |
) | |
from diffusers.models.modeling_utils import ModelMixin, load_state_dict, _load_state_dict_into_model | |
from diffusers.models.unets.unet_2d_blocks import ( | |
CrossAttnDownBlock2D, | |
CrossAttnUpBlock2D, | |
DownBlock2D, | |
UNetMidBlock2DCrossAttn, | |
UNetMidBlock2DSimpleCrossAttn, | |
UpBlock2D, | |
) | |
from diffusers.utils import ( | |
CONFIG_NAME, | |
FLAX_WEIGHTS_NAME, | |
SAFETENSORS_WEIGHTS_NAME, | |
WEIGHTS_NAME, | |
_add_variant, | |
_get_model_file, | |
deprecate, | |
is_torch_version, | |
logging, | |
) | |
from diffusers.utils.import_utils import is_accelerate_available | |
from diffusers.utils.hub_utils import HF_HUB_OFFLINE | |
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE | |
DIFFUSERS_CACHE = HUGGINGFACE_HUB_CACHE | |
from diffusers import __version__ | |
from .unet_mv2d_blocks import ( | |
CrossAttnDownBlockMV2D, | |
CrossAttnUpBlockMV2D, | |
UNetMidBlockMV2DCrossAttn, | |
get_down_block, | |
get_up_block, | |
) | |
from einops import rearrange, repeat | |
from diffusers import __version__ | |
from mvdiffusion.models_unclip.unet_mv2d_blocks import ( | |
CrossAttnDownBlockMV2D, | |
CrossAttnUpBlockMV2D, | |
UNetMidBlockMV2DCrossAttn, | |
get_down_block, | |
get_up_block, | |
) | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class UNetMV2DConditionOutput(BaseOutput): | |
""" | |
The output of [`UNet2DConditionModel`]. | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. | |
""" | |
sample: torch.FloatTensor = None | |
class ResidualBlock(nn.Module): | |
def __init__(self, dim): | |
super(ResidualBlock, self).__init__() | |
self.linear1 = nn.Linear(dim, dim) | |
self.activation = nn.SiLU() | |
self.linear2 = nn.Linear(dim, dim) | |
def forward(self, x): | |
identity = x | |
out = self.linear1(x) | |
out = self.activation(out) | |
out = self.linear2(out) | |
out += identity | |
out = self.activation(out) | |
return out | |
class ResidualLiner(nn.Module): | |
def __init__(self, in_features, out_features, dim, act=None, num_block=1): | |
super(ResidualLiner, self).__init__() | |
self.linear_in = nn.Sequential(nn.Linear(in_features, dim), nn.SiLU()) | |
blocks = nn.ModuleList() | |
for _ in range(num_block): | |
blocks.append(ResidualBlock(dim)) | |
self.blocks = blocks | |
self.linear_out = nn.Linear(dim, out_features) | |
self.act = act | |
def forward(self, x): | |
out = self.linear_in(x) | |
for block in self.blocks: | |
out = block(out) | |
out = self.linear_out(out) | |
if self.act is not None: | |
out = self.act(out) | |
return out | |
class BasicConvBlock(nn.Module): | |
def __init__(self, in_channels, out_channels, stride=1): | |
super(BasicConvBlock, self).__init__() | |
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) | |
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=in_channels, affine=True) | |
self.act = nn.SiLU() | |
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) | |
self.norm2 = nn.GroupNorm(num_groups=8, num_channels=in_channels, affine=True) | |
self.downsample = nn.Sequential() | |
if stride != 1 or in_channels != out_channels: | |
self.downsample = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False), | |
nn.GroupNorm(num_groups=8, num_channels=in_channels, affine=True) | |
) | |
def forward(self, x): | |
identity = x | |
out = self.conv1(x) | |
out = self.norm1(out) | |
out = self.act(out) | |
out = self.conv2(out) | |
out = self.norm2(out) | |
out += self.downsample(identity) | |
out = self.act(out) | |
return out | |
class UNetMV2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): | |
r""" | |
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample | |
shaped output. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
for all models (such as downloading or saving). | |
Parameters: | |
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): | |
Height and width of input/output sample. | |
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample. | |
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output. | |
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. | |
flip_sin_to_cos (`bool`, *optional*, defaults to `False`): | |
Whether to flip the sin to cos in the time embedding. | |
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): | |
The tuple of downsample blocks to use. | |
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`): | |
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or | |
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped. | |
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`): | |
The tuple of upsample blocks to use. | |
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`): | |
Whether to include self-attention in the basic transformer blocks, see | |
[`~models.attention.BasicTransformerBlock`]. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
The tuple of output channels for each block. | |
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. | |
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. | |
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. | |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. | |
If `None`, normalization and activation layers is skipped in post-processing. | |
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. | |
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): | |
The dimension of the cross attention features. | |
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1): | |
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for | |
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], | |
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. | |
encoder_hid_dim (`int`, *optional*, defaults to None): | |
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` | |
dimension to `cross_attention_dim`. | |
encoder_hid_dim_type (`str`, *optional*, defaults to `None`): | |
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text | |
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. | |
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. | |
num_attention_heads (`int`, *optional*): | |
The number of attention heads. If not defined, defaults to `attention_head_dim` | |
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config | |
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`. | |
class_embed_type (`str`, *optional*, defaults to `None`): | |
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`, | |
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. | |
addition_embed_type (`str`, *optional*, defaults to `None`): | |
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or | |
"text". "text" will use the `TextTimeEmbedding` layer. | |
addition_time_embed_dim: (`int`, *optional*, defaults to `None`): | |
Dimension for the timestep embeddings. | |
num_class_embeds (`int`, *optional*, defaults to `None`): | |
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing | |
class conditioning with `class_embed_type` equal to `None`. | |
time_embedding_type (`str`, *optional*, defaults to `positional`): | |
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`. | |
time_embedding_dim (`int`, *optional*, defaults to `None`): | |
An optional override for the dimension of the projected time embedding. | |
time_embedding_act_fn (`str`, *optional*, defaults to `None`): | |
Optional activation function to use only once on the time embeddings before they are passed to the rest of | |
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`. | |
timestep_post_act (`str`, *optional*, defaults to `None`): | |
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`. | |
time_cond_proj_dim (`int`, *optional*, defaults to `None`): | |
The dimension of `cond_proj` layer in the timestep embedding. | |
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. | |
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer. | |
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when | |
`class_embed_type="projection"`. Required when `class_embed_type="projection"`. | |
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time | |
embeddings with the class embeddings. | |
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`): | |
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If | |
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the | |
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False` | |
otherwise. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
sample_size: Optional[int] = None, | |
in_channels: int = 4, | |
out_channels: int = 4, | |
center_input_sample: bool = False, | |
flip_sin_to_cos: bool = True, | |
freq_shift: int = 0, | |
down_block_types: Tuple[str] = ( | |
"CrossAttnDownBlockMV2D", | |
"CrossAttnDownBlockMV2D", | |
"CrossAttnDownBlockMV2D", | |
"DownBlock2D", | |
), | |
mid_block_type: Optional[str] = "UNetMidBlockMV2DCrossAttn", | |
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D"), | |
only_cross_attention: Union[bool, Tuple[bool]] = False, | |
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
layers_per_block: Union[int, Tuple[int]] = 2, | |
downsample_padding: int = 1, | |
mid_block_scale_factor: float = 1, | |
act_fn: str = "silu", | |
norm_num_groups: Optional[int] = 32, | |
norm_eps: float = 1e-5, | |
cross_attention_dim: Union[int, Tuple[int]] = 1280, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
encoder_hid_dim: Optional[int] = None, | |
encoder_hid_dim_type: Optional[str] = None, | |
attention_head_dim: Union[int, Tuple[int]] = 8, | |
num_attention_heads: Optional[Union[int, Tuple[int]]] = None, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
class_embed_type: Optional[str] = None, | |
addition_embed_type: Optional[str] = None, | |
addition_time_embed_dim: Optional[int] = None, | |
num_class_embeds: Optional[int] = None, | |
upcast_attention: bool = False, | |
resnet_time_scale_shift: str = "default", | |
resnet_skip_time_act: bool = False, | |
resnet_out_scale_factor: int = 1.0, | |
time_embedding_type: str = "positional", | |
time_embedding_dim: Optional[int] = None, | |
time_embedding_act_fn: Optional[str] = None, | |
timestep_post_act: Optional[str] = None, | |
time_cond_proj_dim: Optional[int] = None, | |
conv_in_kernel: int = 3, | |
conv_out_kernel: int = 3, | |
projection_class_embeddings_input_dim: Optional[int] = None, | |
projection_camera_embeddings_input_dim: Optional[int] = None, | |
class_embeddings_concat: bool = False, | |
mid_block_only_cross_attention: Optional[bool] = None, | |
cross_attention_norm: Optional[str] = None, | |
addition_embed_type_num_heads=64, | |
num_views: int = 1, | |
cd_attention_last: bool = False, | |
cd_attention_mid: bool = False, | |
multiview_attention: bool = True, | |
sparse_mv_attention: bool = False, | |
selfattn_block: str = "custom", | |
mvcd_attention: bool = False, | |
regress_elevation: bool = False, | |
regress_focal_length: bool = False, | |
num_regress_blocks: int = 4, | |
use_dino: bool = False, | |
addition_downsample: bool = False, | |
addition_channels: Optional[Tuple[int]] = (1280, 1280, 1280), | |
): | |
super().__init__() | |
self.sample_size = sample_size | |
self.num_views = num_views | |
self.mvcd_attention = mvcd_attention | |
if num_attention_heads is not None: | |
raise ValueError( | |
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." | |
) | |
# If `num_attention_heads` is not defined (which is the case for most models) | |
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is. | |
# The reason for this behavior is to correct for incorrectly named variables that were introduced | |
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 | |
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking | |
# which is why we correct for the naming here. | |
num_attention_heads = num_attention_heads or attention_head_dim | |
# Check inputs | |
if len(down_block_types) != len(up_block_types): | |
raise ValueError( | |
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." | |
) | |
if len(block_out_channels) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." | |
) | |
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." | |
) | |
# input | |
conv_in_padding = (conv_in_kernel - 1) // 2 | |
self.conv_in = nn.Conv2d( | |
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding | |
) | |
# time | |
if time_embedding_type == "fourier": | |
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2 | |
if time_embed_dim % 2 != 0: | |
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.") | |
self.time_proj = GaussianFourierProjection( | |
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos | |
) | |
timestep_input_dim = time_embed_dim | |
elif time_embedding_type == "positional": | |
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4 | |
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | |
timestep_input_dim = block_out_channels[0] | |
else: | |
raise ValueError( | |
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`." | |
) | |
self.time_embedding = TimestepEmbedding( | |
timestep_input_dim, | |
time_embed_dim, | |
act_fn=act_fn, | |
post_act_fn=timestep_post_act, | |
cond_proj_dim=time_cond_proj_dim, | |
) | |
if encoder_hid_dim_type is None and encoder_hid_dim is not None: | |
encoder_hid_dim_type = "text_proj" | |
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) | |
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") | |
if encoder_hid_dim is None and encoder_hid_dim_type is not None: | |
raise ValueError( | |
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." | |
) | |
if encoder_hid_dim_type == "text_proj": | |
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) | |
elif encoder_hid_dim_type == "text_image_proj": | |
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much | |
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use | |
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)` | |
self.encoder_hid_proj = TextImageProjection( | |
text_embed_dim=encoder_hid_dim, | |
image_embed_dim=cross_attention_dim, | |
cross_attention_dim=cross_attention_dim, | |
) | |
elif encoder_hid_dim_type == "image_proj": | |
# Kandinsky 2.2 | |
self.encoder_hid_proj = ImageProjection( | |
image_embed_dim=encoder_hid_dim, | |
cross_attention_dim=cross_attention_dim, | |
) | |
elif encoder_hid_dim_type is not None: | |
raise ValueError( | |
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." | |
) | |
else: | |
self.encoder_hid_proj = None | |
# class embedding | |
if class_embed_type is None and num_class_embeds is not None: | |
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) | |
elif class_embed_type == "timestep": | |
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn) | |
elif class_embed_type == "identity": | |
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) | |
elif class_embed_type == "projection": | |
if projection_class_embeddings_input_dim is None: | |
raise ValueError( | |
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" | |
) | |
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except | |
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings | |
# 2. it projects from an arbitrary input dimension. | |
# | |
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. | |
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings. | |
# As a result, `TimestepEmbedding` can be passed arbitrary vectors. | |
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) | |
elif class_embed_type == "simple_projection": | |
if projection_class_embeddings_input_dim is None: | |
raise ValueError( | |
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set" | |
) | |
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim) | |
else: | |
self.class_embedding = None | |
if addition_embed_type == "text": | |
if encoder_hid_dim is not None: | |
text_time_embedding_from_dim = encoder_hid_dim | |
else: | |
text_time_embedding_from_dim = cross_attention_dim | |
self.add_embedding = TextTimeEmbedding( | |
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads | |
) | |
elif addition_embed_type == "text_image": | |
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much | |
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use | |
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)` | |
self.add_embedding = TextImageTimeEmbedding( | |
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim | |
) | |
elif addition_embed_type == "text_time": | |
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) | |
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) | |
elif addition_embed_type == "image": | |
# Kandinsky 2.2 | |
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) | |
elif addition_embed_type == "image_hint": | |
# Kandinsky 2.2 ControlNet | |
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) | |
elif addition_embed_type is not None: | |
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") | |
if time_embedding_act_fn is None: | |
self.time_embed_act = None | |
else: | |
self.time_embed_act = get_activation(time_embedding_act_fn) | |
self.down_blocks = nn.ModuleList([]) | |
self.up_blocks = nn.ModuleList([]) | |
if isinstance(only_cross_attention, bool): | |
if mid_block_only_cross_attention is None: | |
mid_block_only_cross_attention = only_cross_attention | |
only_cross_attention = [only_cross_attention] * len(down_block_types) | |
if mid_block_only_cross_attention is None: | |
mid_block_only_cross_attention = False | |
if isinstance(num_attention_heads, int): | |
num_attention_heads = (num_attention_heads,) * len(down_block_types) | |
if isinstance(attention_head_dim, int): | |
attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
if isinstance(cross_attention_dim, int): | |
cross_attention_dim = (cross_attention_dim,) * len(down_block_types) | |
if isinstance(layers_per_block, int): | |
layers_per_block = [layers_per_block] * len(down_block_types) | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) | |
if class_embeddings_concat: | |
# The time embeddings are concatenated with the class embeddings. The dimension of the | |
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the | |
# regular time embeddings | |
blocks_time_embed_dim = time_embed_dim * 2 | |
else: | |
blocks_time_embed_dim = time_embed_dim | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=layers_per_block[i], | |
transformer_layers_per_block=transformer_layers_per_block[i], | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=blocks_time_embed_dim, | |
add_downsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim[i], | |
num_attention_heads=num_attention_heads[i], | |
downsample_padding=downsample_padding, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
resnet_skip_time_act=resnet_skip_time_act, | |
resnet_out_scale_factor=resnet_out_scale_factor, | |
cross_attention_norm=cross_attention_norm, | |
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, | |
num_views=num_views, | |
cd_attention_last=cd_attention_last, | |
cd_attention_mid=cd_attention_mid, | |
multiview_attention=multiview_attention, | |
sparse_mv_attention=sparse_mv_attention, | |
selfattn_block=selfattn_block, | |
mvcd_attention=mvcd_attention, | |
use_dino=use_dino | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
if mid_block_type == "UNetMidBlock2DCrossAttn": | |
self.mid_block = UNetMidBlock2DCrossAttn( | |
transformer_layers_per_block=transformer_layers_per_block[-1], | |
in_channels=block_out_channels[-1], | |
temb_channels=blocks_time_embed_dim, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
cross_attention_dim=cross_attention_dim[-1], | |
num_attention_heads=num_attention_heads[-1], | |
resnet_groups=norm_num_groups, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
) | |
# custom MV2D attention block | |
elif mid_block_type == "UNetMidBlockMV2DCrossAttn": | |
self.mid_block = UNetMidBlockMV2DCrossAttn( | |
transformer_layers_per_block=transformer_layers_per_block[-1], | |
in_channels=block_out_channels[-1], | |
temb_channels=blocks_time_embed_dim, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
cross_attention_dim=cross_attention_dim[-1], | |
num_attention_heads=num_attention_heads[-1], | |
resnet_groups=norm_num_groups, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
num_views=num_views, | |
cd_attention_last=cd_attention_last, | |
cd_attention_mid=cd_attention_mid, | |
multiview_attention=multiview_attention, | |
sparse_mv_attention=sparse_mv_attention, | |
selfattn_block=selfattn_block, | |
mvcd_attention=mvcd_attention, | |
use_dino=use_dino | |
) | |
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn": | |
self.mid_block = UNetMidBlock2DSimpleCrossAttn( | |
in_channels=block_out_channels[-1], | |
temb_channels=blocks_time_embed_dim, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
cross_attention_dim=cross_attention_dim[-1], | |
attention_head_dim=attention_head_dim[-1], | |
resnet_groups=norm_num_groups, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
skip_time_act=resnet_skip_time_act, | |
only_cross_attention=mid_block_only_cross_attention, | |
cross_attention_norm=cross_attention_norm, | |
) | |
elif mid_block_type is None: | |
self.mid_block = None | |
else: | |
raise ValueError(f"unknown mid_block_type : {mid_block_type}") | |
self.addition_downsample = addition_downsample | |
if self.addition_downsample: | |
inc = block_out_channels[-1] | |
self.downsample = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.conv_block = nn.ModuleList() | |
self.conv_block.append(BasicConvBlock(inc, addition_channels[0], stride=1)) | |
for dim_ in addition_channels[1:-1]: | |
self.conv_block.append(BasicConvBlock(dim_, dim_, stride=1)) | |
self.conv_block.append(BasicConvBlock(dim_, inc)) | |
self.addition_conv_out = nn.Conv2d(inc, inc, kernel_size=1, bias=False) | |
nn.init.zeros_(self.addition_conv_out.weight.data) | |
self.addition_act_out = nn.SiLU() | |
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) | |
self.regress_elevation = regress_elevation | |
self.regress_focal_length = regress_focal_length | |
if regress_elevation or regress_focal_length: | |
self.pool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.camera_embedding = TimestepEmbedding(projection_camera_embeddings_input_dim, time_embed_dim=time_embed_dim) | |
regress_in_dim = block_out_channels[-1]*2 if mvcd_attention else block_out_channels | |
if regress_elevation: | |
self.elevation_regressor = ResidualLiner(regress_in_dim, 1, 1280, act=None, num_block=num_regress_blocks) | |
if regress_focal_length: | |
self.focal_regressor = ResidualLiner(regress_in_dim, 1, 1280, act=None, num_block=num_regress_blocks) | |
''' | |
self.regress_elevation = regress_elevation | |
self.regress_focal_length = regress_focal_length | |
if regress_elevation and (not regress_focal_length): | |
print("Regressing elevation") | |
cam_dim = 1 | |
elif regress_focal_length and (not regress_elevation): | |
print("Regressing focal length") | |
cam_dim = 6 | |
elif regress_elevation and regress_focal_length: | |
print("Regressing both elevation and focal length") | |
cam_dim = 7 | |
else: | |
cam_dim = 0 | |
assert projection_camera_embeddings_input_dim == 2*cam_dim, "projection_camera_embeddings_input_dim should be 2*cam_dim" | |
if regress_elevation or regress_focal_length: | |
self.elevation_regressor = nn.ModuleList([ | |
nn.Linear(block_out_channels[-1], 1280), | |
nn.SiLU(), | |
nn.Linear(1280, 1280), | |
nn.SiLU(), | |
nn.Linear(1280, cam_dim) | |
]) | |
self.pool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.focal_act = nn.Softmax(dim=-1) | |
self.camera_embedding = TimestepEmbedding(projection_camera_embeddings_input_dim, time_embed_dim=time_embed_dim) | |
''' | |
# count how many layers upsample the images | |
self.num_upsamplers = 0 | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
reversed_num_attention_heads = list(reversed(num_attention_heads)) | |
reversed_layers_per_block = list(reversed(layers_per_block)) | |
reversed_cross_attention_dim = list(reversed(cross_attention_dim)) | |
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) | |
only_cross_attention = list(reversed(only_cross_attention)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
is_final_block = i == len(block_out_channels) - 1 | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
# add upsample block for all BUT final layer | |
if not is_final_block: | |
add_upsample = True | |
self.num_upsamplers += 1 | |
else: | |
add_upsample = False | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=reversed_layers_per_block[i] + 1, | |
transformer_layers_per_block=reversed_transformer_layers_per_block[i], | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
temb_channels=blocks_time_embed_dim, | |
add_upsample=add_upsample, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=reversed_cross_attention_dim[i], | |
num_attention_heads=reversed_num_attention_heads[i], | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
resnet_skip_time_act=resnet_skip_time_act, | |
resnet_out_scale_factor=resnet_out_scale_factor, | |
cross_attention_norm=cross_attention_norm, | |
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, | |
num_views=num_views, | |
cd_attention_last=cd_attention_last, | |
cd_attention_mid=cd_attention_mid, | |
multiview_attention=multiview_attention, | |
sparse_mv_attention=sparse_mv_attention, | |
selfattn_block=selfattn_block, | |
mvcd_attention=mvcd_attention, | |
use_dino=use_dino | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
if norm_num_groups is not None: | |
self.conv_norm_out = nn.GroupNorm( | |
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps | |
) | |
self.conv_act = get_activation(act_fn) | |
else: | |
self.conv_norm_out = None | |
self.conv_act = None | |
conv_out_padding = (conv_out_kernel - 1) // 2 | |
self.conv_out = nn.Conv2d( | |
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding | |
) | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "set_processor"): | |
processors[f"{name}.processor"] = module.processor | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def set_default_attn_processor(self): | |
""" | |
Disables custom attention processors and sets the default attention implementation. | |
""" | |
self.set_attn_processor(AttnProcessor()) | |
def set_attention_slice(self, slice_size): | |
r""" | |
Enable sliced attention computation. | |
When this option is enabled, the attention module splits the input tensor in slices to compute attention in | |
several steps. This is useful for saving some memory in exchange for a small decrease in speed. | |
Args: | |
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If | |
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is | |
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
must be a multiple of `slice_size`. | |
""" | |
sliceable_head_dims = [] | |
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): | |
if hasattr(module, "set_attention_slice"): | |
sliceable_head_dims.append(module.sliceable_head_dim) | |
for child in module.children(): | |
fn_recursive_retrieve_sliceable_dims(child) | |
# retrieve number of attention layers | |
for module in self.children(): | |
fn_recursive_retrieve_sliceable_dims(module) | |
num_sliceable_layers = len(sliceable_head_dims) | |
if slice_size == "auto": | |
# half the attention head size is usually a good trade-off between | |
# speed and memory | |
slice_size = [dim // 2 for dim in sliceable_head_dims] | |
elif slice_size == "max": | |
# make smallest slice possible | |
slice_size = num_sliceable_layers * [1] | |
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size | |
if len(slice_size) != len(sliceable_head_dims): | |
raise ValueError( | |
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
) | |
for i in range(len(slice_size)): | |
size = slice_size[i] | |
dim = sliceable_head_dims[i] | |
if size is not None and size > dim: | |
raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | |
# Recursively walk through all the children. | |
# Any children which exposes the set_attention_slice method | |
# gets the message | |
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): | |
if hasattr(module, "set_attention_slice"): | |
module.set_attention_slice(slice_size.pop()) | |
for child in module.children(): | |
fn_recursive_set_attention_slice(child, slice_size) | |
reversed_slice_size = list(reversed(slice_size)) | |
for module in self.children(): | |
fn_recursive_set_attention_slice(module, reversed_slice_size) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, (CrossAttnDownBlock2D, CrossAttnDownBlockMV2D, DownBlock2D, CrossAttnUpBlock2D, CrossAttnUpBlockMV2D, UpBlock2D)): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
class_labels: Optional[torch.Tensor] = None, | |
timestep_cond: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
mid_block_additional_residual: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
dino_feature: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
vis_max_min: bool = False, | |
) -> Union[UNetMV2DConditionOutput, Tuple]: | |
r""" | |
The [`UNet2DConditionModel`] forward method. | |
Args: | |
sample (`torch.FloatTensor`): | |
The noisy input tensor with the following shape `(batch, channel, height, width)`. | |
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. | |
encoder_hidden_states (`torch.FloatTensor`): | |
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. | |
encoder_attention_mask (`torch.Tensor`): | |
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If | |
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, | |
which adds large negative values to the attention scores corresponding to "discard" tokens. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
tuple. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`]. | |
added_cond_kwargs: (`dict`, *optional*): | |
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that | |
are passed along to the UNet blocks. | |
Returns: | |
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: | |
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise | |
a `tuple` is returned where the first element is the sample tensor. | |
""" | |
record_max_min = {} | |
# By default samples have to be AT least a multiple of the overall upsampling factor. | |
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers). | |
# However, the upsampling interpolation output size can be forced to fit any upsampling size | |
# on the fly if necessary. | |
default_overall_up_factor = 2**self.num_upsamplers | |
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
forward_upsample_size = False | |
upsample_size = None | |
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
logger.info("Forward upsample size to force interpolation output size.") | |
forward_upsample_size = True | |
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension | |
# expects mask of shape: | |
# [batch, key_tokens] | |
# adds singleton query_tokens dimension: | |
# [batch, 1, key_tokens] | |
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
if attention_mask is not None: | |
# assume that mask is expressed as: | |
# (1 = keep, 0 = discard) | |
# convert mask into a bias that can be added to attention scores: | |
# (keep = +0, discard = -10000.0) | |
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
if encoder_attention_mask is not None: | |
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
# 0. center input if necessary | |
if self.config.center_input_sample: | |
sample = 2 * sample - 1.0 | |
if vis_max_min: record_max_min["sample"] = (sample.min().detach().float().cpu().numpy().tolist(), sample.max().detach().float().cpu().numpy().tolist()) | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timesteps = timesteps.expand(sample.shape[0]) | |
t_emb = self.time_proj(timesteps) | |
# `Timesteps` does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=sample.dtype) | |
emb = self.time_embedding(t_emb, timestep_cond) | |
aug_emb = None | |
if vis_max_min: record_max_min["t_emb"] = (t_emb.min().detach().float().cpu().numpy().tolist(), t_emb.max().detach().float().cpu().numpy().tolist()) | |
if self.class_embedding is not None: | |
if class_labels is None: | |
raise ValueError("class_labels should be provided when num_class_embeds > 0") | |
if self.config.class_embed_type == "timestep": | |
class_labels = self.time_proj(class_labels) | |
# `Timesteps` does not contain any weights and will always return f32 tensors | |
# there might be better ways to encapsulate this. | |
class_labels = class_labels.to(dtype=sample.dtype) | |
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) | |
if vis_max_min: record_max_min["class_emb"] = (class_emb.min().detach().float().cpu().numpy().tolist(), class_emb.max().detach().float().cpu().numpy().tolist()) | |
if self.config.class_embeddings_concat: | |
emb = torch.cat([emb, class_emb], dim=-1) | |
else: | |
emb = emb + class_emb | |
if self.config.addition_embed_type == "text": | |
aug_emb = self.add_embedding(encoder_hidden_states) | |
elif self.config.addition_embed_type == "text_image": | |
# Kandinsky 2.1 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" | |
) | |
image_embs = added_cond_kwargs.get("image_embeds") | |
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) | |
aug_emb = self.add_embedding(text_embs, image_embs) | |
elif self.config.addition_embed_type == "text_time": | |
# SDXL - style | |
if "text_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" | |
) | |
text_embeds = added_cond_kwargs.get("text_embeds") | |
if "time_ids" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" | |
) | |
time_ids = added_cond_kwargs.get("time_ids") | |
time_embeds = self.add_time_proj(time_ids.flatten()) | |
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) | |
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) | |
add_embeds = add_embeds.to(emb.dtype) | |
aug_emb = self.add_embedding(add_embeds) | |
elif self.config.addition_embed_type == "image": | |
# Kandinsky 2.2 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" | |
) | |
image_embs = added_cond_kwargs.get("image_embeds") | |
aug_emb = self.add_embedding(image_embs) | |
elif self.config.addition_embed_type == "image_hint": | |
# Kandinsky 2.2 - style | |
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" | |
) | |
image_embs = added_cond_kwargs.get("image_embeds") | |
hint = added_cond_kwargs.get("hint") | |
aug_emb, hint = self.add_embedding(image_embs, hint) | |
sample = torch.cat([sample, hint], dim=1) | |
emb = emb + aug_emb if aug_emb is not None else emb | |
if aug_emb is not None and vis_max_min: record_max_min["aug_emb"] = (aug_emb.min().detach().float().cpu().numpy().tolist(), aug_emb.max().detach().float().cpu().numpy().tolist()) | |
emb_pre_act = emb | |
if self.time_embed_act is not None: | |
emb = self.time_embed_act(emb) | |
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": | |
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) | |
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": | |
# Kadinsky 2.1 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" | |
) | |
image_embeds = added_cond_kwargs.get("image_embeds") | |
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) | |
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj": | |
# Kandinsky 2.2 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" | |
) | |
image_embeds = added_cond_kwargs.get("image_embeds") | |
encoder_hidden_states = self.encoder_hid_proj(image_embeds) | |
# 2. pre-process | |
sample = self.conv_in(sample) | |
if vis_max_min: record_max_min["conv_in"] = (sample.min().detach().float().cpu().numpy().tolist(), sample.max().detach().float().cpu().numpy().tolist()) | |
# 3. down | |
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None | |
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None | |
down_block_res_samples = (sample,) | |
for i, downsample_block in enumerate(self.down_blocks): | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
# For t2i-adapter CrossAttnDownBlock2D | |
additional_residuals = {} | |
if is_adapter and len(down_block_additional_residuals) > 0: | |
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0) | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
dino_feature=dino_feature, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_attention_mask=encoder_attention_mask, | |
**additional_residuals, | |
) | |
else: | |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
if is_adapter and len(down_block_additional_residuals) > 0: | |
sample += down_block_additional_residuals.pop(0) | |
down_block_res_samples += res_samples | |
if vis_max_min: record_max_min[f"down_block_{i}"] = (sample.min().detach().float().cpu().numpy().tolist(), sample.max().detach().float().cpu().numpy().tolist()) | |
if is_controlnet: | |
new_down_block_res_samples = () | |
for down_block_res_sample, down_block_additional_residual in zip( | |
down_block_res_samples, down_block_additional_residuals | |
): | |
down_block_res_sample = down_block_res_sample + down_block_additional_residual | |
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) | |
down_block_res_samples = new_down_block_res_samples | |
if self.addition_downsample: | |
global_sample = sample | |
global_sample = self.downsample(global_sample) | |
for layer in self.conv_block: | |
global_sample = layer(global_sample) | |
global_sample = self.addition_act_out(self.addition_conv_out(global_sample)) | |
global_sample = self.upsample(global_sample) | |
if vis_max_min: record_max_min["global_sample"] = (global_sample.min().detach().float().cpu().numpy().tolist(), global_sample.max().detach().float().cpu().numpy().tolist()) | |
# 4. mid | |
if self.mid_block is not None: | |
sample = self.mid_block( | |
sample, | |
emb, | |
encoder_hidden_states=encoder_hidden_states, | |
dino_feature=dino_feature, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
if vis_max_min: record_max_min["mid_block"] = (sample.min().detach().float().cpu().numpy().tolist(), sample.max().detach().float().cpu().numpy().tolist()) | |
# 4.1 regress elevation and focal length | |
# # predict elevation -> embed -> projection -> add to time emb | |
if self.regress_elevation or self.regress_focal_length: | |
pool_embeds = self.pool(sample.detach()).squeeze(-1).squeeze(-1) # (2B, C) | |
if self.mvcd_attention: | |
pool_embeds_normal, pool_embeds_color = torch.chunk(pool_embeds, 2, dim=0) | |
pool_embeds = torch.cat([pool_embeds_normal, pool_embeds_color], dim=-1) # (B, 2C) | |
pose_pred = [] | |
if self.regress_elevation: | |
ele_pred = self.elevation_regressor(pool_embeds) | |
ele_pred = rearrange(ele_pred, '(b v) c -> b v c', v=self.num_views) | |
ele_pred = torch.mean(ele_pred, dim=1) | |
pose_pred.append(ele_pred) # b, c | |
if vis_max_min: record_max_min["ele_pred"] = (ele_pred.min().detach().float().cpu().numpy().tolist(), ele_pred.max().detach().float().cpu().numpy().tolist()) | |
if self.regress_focal_length: | |
focal_pred = self.focal_regressor(pool_embeds) | |
focal_pred = rearrange(focal_pred, '(b v) c -> b v c', v=self.num_views) | |
focal_pred = torch.mean(focal_pred, dim=1) | |
pose_pred.append(focal_pred) | |
if vis_max_min: record_max_min["focal_pred"] = (focal_pred.min().detach().float().cpu().numpy().tolist(), focal_pred.max().detach().float().cpu().numpy().tolist()) | |
pose_pred = torch.cat(pose_pred, dim=-1) | |
# 'e_de_da_sincos', (B, 2) | |
pose_embeds = torch.cat([ | |
torch.sin(pose_pred), | |
torch.cos(pose_pred) | |
], dim=-1) | |
pose_embeds = self.camera_embedding(pose_embeds) | |
pose_embeds = torch.repeat_interleave(pose_embeds, self.num_views, 0) | |
if vis_max_min: record_max_min["pose_embeds"] = (pose_embeds.min().detach().float().cpu().numpy().tolist(), pose_embeds.max().detach().float().cpu().numpy().tolist()) | |
if self.mvcd_attention: | |
pose_embeds = torch.cat([pose_embeds,] * 2, dim=0) | |
emb = pose_embeds + emb_pre_act | |
if self.time_embed_act is not None: | |
emb = self.time_embed_act(emb) | |
''' | |
if self.regress_elevation or self.regress_focal_length: | |
pose_pred = self.pool(sample.detach()).squeeze(-1).squeeze(-1) # (B, C) | |
for liner in self.elevation_regressor: | |
pose_pred = liner(pose_pred) | |
pose_pred = torch.cat([ | |
pose_pred[:, 0:1], | |
self.focal_act(pose_pred[:, 1:]) | |
], dim=-1) | |
# 'e_de_da_sincos', (B, 2) | |
pose_embeds = torch.cat([ | |
torch.sin(pose_pred), | |
torch.cos(pose_pred) | |
], dim=-1) | |
pose_embeds = self.camera_embedding(pose_embeds) | |
emb = pose_embeds + emb_pre_act | |
if self.time_embed_act is not None: | |
emb = self.time_embed_act(emb) | |
''' | |
if is_controlnet: | |
sample = sample + mid_block_additional_residual | |
if self.addition_downsample: | |
sample = sample + global_sample | |
# 5. up | |
for i, upsample_block in enumerate(self.up_blocks): | |
is_final_block = i == len(self.up_blocks) - 1 | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
# if we have not reached the final block and need to forward the | |
# upsample size, we do it here | |
if not is_final_block and forward_upsample_size: | |
upsample_size = down_block_res_samples[-1].shape[2:] | |
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
dino_feature=dino_feature, | |
cross_attention_kwargs=cross_attention_kwargs, | |
upsample_size=upsample_size, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
else: | |
sample = upsample_block( | |
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size | |
) | |
if vis_max_min: record_max_min[f"upsample_block_{i}"] = (torch.abs(sample.min().detach().float()).cpu().numpy().tolist(), sample.max().detach().float().cpu().numpy().tolist()) | |
up_s = sample | |
if torch.isnan(sample).any() or torch.isinf(sample).any(): | |
print("NAN in sample, stop training.") | |
exit() | |
# 6. post-process | |
if self.conv_norm_out: | |
sample = self.conv_norm_out(sample) | |
if vis_max_min: record_max_min[f"conv_norm_out"] = (sample.min().detach().float().cpu().numpy().tolist(), sample.max().detach().float().cpu().numpy().tolist()) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
if vis_max_min: record_max_min[f"conv_out"] = (sample.min().detach().float().cpu().numpy().tolist(), sample.max().detach().float().cpu().numpy().tolist()) | |
if not return_dict: | |
return (sample,) | |
# return (sample, pose_pred) | |
if self.regress_elevation or self.regress_focal_length: | |
return UNetMV2DConditionOutput(sample=sample), pose_pred, record_max_min, up_s | |
else: | |
return UNetMV2DConditionOutput(sample=sample), up_s | |
# return UNetMV2DConditionOutput(sample=sample), up_s, record_max_min | |
def from_pretrained_2d( | |
cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], | |
camera_embedding_type: str, num_views: int, sample_size: int, | |
zero_init_conv_in: bool = True, zero_init_camera_projection: bool = False, | |
projection_camera_embeddings_input_dim: int=2, | |
cd_attention_last: bool = False, num_regress_blocks: int = 4, | |
cd_attention_mid: bool = False, multiview_attention: bool = True, | |
sparse_mv_attention: bool = False, selfattn_block: str = 'custom', mvcd_attention: bool = False, | |
in_channels: int = 8, out_channels: int = 4, unclip: bool = False, regress_elevation: bool = False, regress_focal_length: bool = False, | |
init_mvattn_with_selfattn: bool= False, use_dino: bool = False, addition_downsample: bool = False, use_face_adapter: bool=True, | |
**kwargs | |
): | |
r""" | |
Instantiate a pretrained PyTorch model from a pretrained model configuration. | |
The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To | |
train the model, set it back in training mode with `model.train()`. | |
Parameters: | |
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): | |
Can be either: | |
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
the Hub. | |
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
with [`~ModelMixin.save_pretrained`]. | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
is not used. | |
torch_dtype (`str` or `torch.dtype`, *optional*): | |
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the | |
dtype is automatically derived from the model's weights. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any | |
incompletely downloaded files are deleted. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
output_loading_info (`bool`, *optional*, defaults to `False`): | |
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. | |
local_files_only(`bool`, *optional*, defaults to `False`): | |
Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
won't be downloaded from the Hub. | |
use_auth_token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
`diffusers-cli login` (stored in `~/.huggingface`) is used. | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
allowed by Git. | |
from_flax (`bool`, *optional*, defaults to `False`): | |
Load the model weights from a Flax checkpoint save file. | |
subfolder (`str`, *optional*, defaults to `""`): | |
The subfolder location of a model file within a larger model repository on the Hub or locally. | |
mirror (`str`, *optional*): | |
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not | |
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more | |
information. | |
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): | |
A map that specifies where each submodule should go. It doesn't need to be defined for each | |
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the | |
same device. | |
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For | |
more information about each option see [designing a device | |
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). | |
max_memory (`Dict`, *optional*): | |
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for | |
each GPU and the available CPU RAM if unset. | |
offload_folder (`str` or `os.PathLike`, *optional*): | |
The path to offload weights if `device_map` contains the value `"disk"`. | |
offload_state_dict (`bool`, *optional*): | |
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if | |
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True` | |
when there is some disk offload. | |
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): | |
Speed up model loading only loading the pretrained weights and not initializing the weights. This also | |
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. | |
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this | |
argument to `True` will raise an error. | |
variant (`str`, *optional*): | |
Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when | |
loading `from_flax`. | |
use_safetensors (`bool`, *optional*, defaults to `None`): | |
If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the | |
`safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors` | |
weights. If set to `False`, `safetensors` weights are not loaded. | |
<Tip> | |
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with | |
`huggingface-cli login`. You can also activate the special | |
["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a | |
firewalled environment. | |
</Tip> | |
Example: | |
```py | |
from diffusers import UNet2DConditionModel | |
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet") | |
``` | |
If you get the error message below, you need to finetune the weights for your downstream task: | |
```bash | |
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: | |
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated | |
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. | |
``` | |
""" | |
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) | |
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False) | |
force_download = kwargs.pop("force_download", False) | |
from_flax = kwargs.pop("from_flax", False) | |
resume_download = kwargs.pop("resume_download", False) | |
proxies = kwargs.pop("proxies", None) | |
output_loading_info = kwargs.pop("output_loading_info", False) | |
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
revision = kwargs.pop("revision", None) | |
torch_dtype = kwargs.pop("torch_dtype", None) | |
subfolder = kwargs.pop("subfolder", None) | |
device_map = kwargs.pop("device_map", None) | |
max_memory = kwargs.pop("max_memory", None) | |
offload_folder = kwargs.pop("offload_folder", None) | |
offload_state_dict = kwargs.pop("offload_state_dict", False) | |
variant = kwargs.pop("variant", None) | |
use_safetensors = kwargs.pop("use_safetensors", None) | |
if use_safetensors: | |
raise ValueError( | |
"`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors" | |
) | |
allow_pickle = False | |
if use_safetensors is None: | |
use_safetensors = True | |
allow_pickle = True | |
if device_map is not None and not is_accelerate_available(): | |
raise NotImplementedError( | |
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set" | |
" `device_map=None`. You can install accelerate with `pip install accelerate`." | |
) | |
# Check if we can handle device_map and dispatching the weights | |
if device_map is not None and not is_torch_version(">=", "1.9.0"): | |
raise NotImplementedError( | |
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set" | |
" `device_map=None`." | |
) | |
# Load config if we don't provide a configuration | |
config_path = pretrained_model_name_or_path | |
user_agent = { | |
"diffusers": __version__, | |
"file_type": "model", | |
"framework": "pytorch", | |
} | |
# load config | |
config, unused_kwargs, commit_hash = cls.load_config( | |
config_path, | |
cache_dir=cache_dir, | |
return_unused_kwargs=True, | |
return_commit_hash=True, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
revision=revision, | |
subfolder=subfolder, | |
device_map=device_map, | |
max_memory=max_memory, | |
offload_folder=offload_folder, | |
offload_state_dict=offload_state_dict, | |
user_agent=user_agent, | |
**kwargs, | |
) | |
# modify config | |
config["_class_name"] = cls.__name__ | |
config['in_channels'] = in_channels | |
config['out_channels'] = out_channels | |
config['sample_size'] = sample_size # training resolution | |
config['num_views'] = num_views | |
config['cd_attention_last'] = cd_attention_last | |
config['cd_attention_mid'] = cd_attention_mid | |
config['multiview_attention'] = multiview_attention | |
config['sparse_mv_attention'] = sparse_mv_attention | |
config['selfattn_block'] = selfattn_block | |
config['mvcd_attention'] = mvcd_attention | |
config["down_block_types"] = [ | |
"CrossAttnDownBlockMV2D", | |
"CrossAttnDownBlockMV2D", | |
"CrossAttnDownBlockMV2D", | |
"DownBlock2D" | |
] | |
config['mid_block_type'] = "UNetMidBlockMV2DCrossAttn" | |
config["up_block_types"] = [ | |
"UpBlock2D", | |
"CrossAttnUpBlockMV2D", | |
"CrossAttnUpBlockMV2D", | |
"CrossAttnUpBlockMV2D" | |
] | |
config['regress_elevation'] = regress_elevation # true | |
config['regress_focal_length'] = regress_focal_length # true | |
config['projection_camera_embeddings_input_dim'] = projection_camera_embeddings_input_dim # 2 for elevation and 10 for focal_length | |
config['use_dino'] = use_dino | |
config['num_regress_blocks'] = num_regress_blocks | |
config['addition_downsample'] = addition_downsample | |
# load model | |
model_file = None | |
if from_flax: | |
raise NotImplementedError | |
else: | |
if use_safetensors: | |
try: | |
model_file = _get_model_file( | |
pretrained_model_name_or_path, | |
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant), | |
cache_dir=cache_dir, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
commit_hash=commit_hash, | |
) | |
except IOError as e: | |
if not allow_pickle: | |
raise e | |
pass | |
if model_file is None: | |
model_file = _get_model_file( | |
pretrained_model_name_or_path, | |
weights_name=_add_variant(WEIGHTS_NAME, variant), | |
cache_dir=cache_dir, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
use_auth_token=use_auth_token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
commit_hash=commit_hash, | |
) | |
model = cls.from_config(config, **unused_kwargs) | |
import copy | |
state_dict_pretrain = load_state_dict(model_file, variant=variant) | |
state_dict = copy.deepcopy(state_dict_pretrain) | |
if init_mvattn_with_selfattn: | |
for key in state_dict_pretrain: | |
if 'attn1' in key: | |
key_mv = key.replace('attn1', 'attn_mv') | |
state_dict[key_mv] = state_dict_pretrain[key] | |
if 'to_out.0.weight' in key: | |
nn.init.zeros_(state_dict[key_mv].data) | |
if 'transformer_blocks' in key and 'norm1' in key: # in case that initialize the norm layer in resnet block | |
key_mv = key.replace('norm1', 'norm_mv') | |
state_dict[key_mv] = state_dict_pretrain[key] | |
del state_dict_pretrain | |
model._convert_deprecated_attention_blocks(state_dict) | |
conv_in_weight = state_dict['conv_in.weight'] | |
conv_out_weight = state_dict['conv_out.weight'] | |
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model_2d( | |
model, | |
state_dict, | |
model_file, | |
pretrained_model_name_or_path, | |
ignore_mismatched_sizes=True, | |
) | |
if any([key == 'conv_in.weight' for key, _, _ in mismatched_keys]): | |
# initialize from the original SD structure | |
model.conv_in.weight.data[:,:4] = conv_in_weight | |
# whether to place all zero to new layers? | |
if zero_init_conv_in: | |
model.conv_in.weight.data[:,4:] = 0. | |
if any([key == 'conv_out.weight' for key, _, _ in mismatched_keys]): | |
# initialize from the original SD structure | |
model.conv_out.weight.data[:,:4] = conv_out_weight | |
if out_channels == 8: # copy for the last 4 channels | |
model.conv_out.weight.data[:, 4:] = conv_out_weight | |
if (regress_elevation or regress_focal_length) and zero_init_camera_projection: # true | |
params = [p for p in model.camera_embedding.parameters()] | |
torch.nn.init.zeros_(params[-1].data) | |
loading_info = { | |
"missing_keys": missing_keys, | |
"unexpected_keys": unexpected_keys, | |
"mismatched_keys": mismatched_keys, | |
"error_msgs": error_msgs, | |
} | |
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype): | |
raise ValueError( | |
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}." | |
) | |
elif torch_dtype is not None: | |
model = model.to(torch_dtype) | |
model.register_to_config(_name_or_path=pretrained_model_name_or_path) | |
# Set model in evaluation mode to deactivate DropOut modules by default | |
model.eval() | |
if output_loading_info: | |
return model, loading_info | |
return model | |
def _load_pretrained_model_2d( | |
cls, | |
model, | |
state_dict, | |
resolved_archive_file, | |
pretrained_model_name_or_path, | |
ignore_mismatched_sizes=False, | |
): | |
# Retrieve missing & unexpected_keys | |
model_state_dict = model.state_dict() | |
loaded_keys = list(state_dict.keys()) | |
expected_keys = list(model_state_dict.keys()) | |
original_loaded_keys = loaded_keys | |
missing_keys = list(set(expected_keys) - set(loaded_keys)) | |
unexpected_keys = list(set(loaded_keys) - set(expected_keys)) | |
# Make sure we are able to load base models as well as derived models (with heads) | |
model_to_load = model | |
def _find_mismatched_keys( | |
state_dict, | |
model_state_dict, | |
loaded_keys, | |
ignore_mismatched_sizes, | |
): | |
mismatched_keys = [] | |
if ignore_mismatched_sizes: | |
for checkpoint_key in loaded_keys: | |
model_key = checkpoint_key | |
if ( | |
model_key in model_state_dict | |
and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape | |
): | |
mismatched_keys.append( | |
(checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape) | |
) | |
del state_dict[checkpoint_key] | |
return mismatched_keys | |
if state_dict is not None: | |
# Whole checkpoint | |
mismatched_keys = _find_mismatched_keys( | |
state_dict, | |
model_state_dict, | |
original_loaded_keys, | |
ignore_mismatched_sizes, | |
) | |
error_msgs = _load_state_dict_into_model(model_to_load, state_dict) | |
if len(error_msgs) > 0: | |
error_msg = "\n\t".join(error_msgs) | |
if "size mismatch" in error_msg: | |
error_msg += ( | |
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method." | |
) | |
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}") | |
if len(unexpected_keys) > 0: | |
logger.warning( | |
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when" | |
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are" | |
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task" | |
" or with another architecture (e.g. initializing a BertForSequenceClassification model from a" | |
" BertForPreTraining model).\n- This IS NOT expected if you are initializing" | |
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly" | |
" identical (initializing a BertForSequenceClassification model from a" | |
" BertForSequenceClassification model)." | |
) | |
else: | |
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") | |
if len(missing_keys) > 0: | |
logger.warning( | |
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" | |
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably" | |
" TRAIN this model on a down-stream task to be able to use it for predictions and inference." | |
) | |
elif len(mismatched_keys) == 0: | |
logger.info( | |
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at" | |
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the" | |
f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions" | |
" without further training." | |
) | |
if len(mismatched_keys) > 0: | |
mismatched_warning = "\n".join( | |
[ | |
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" | |
for key, shape1, shape2 in mismatched_keys | |
] | |
) | |
logger.warning( | |
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" | |
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not" | |
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be" | |
" able to use it for predictions and inference." | |
) | |
return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs | |