Spaces:
Sleeping
Sleeping
""" | |
Author: Yao Feng | |
Copyright (c) 2020, Yao Feng | |
All rights reserved. | |
""" | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from skimage.io import imread | |
import imageio | |
from . import util | |
def set_rasterizer(type='pytorch3d'): | |
if type == 'pytorch3d': | |
global Meshes, load_obj, rasterize_meshes | |
from pytorch3d.structures import Meshes | |
from pytorch3d.io import load_obj | |
from pytorch3d.renderer.mesh import rasterize_meshes | |
elif type == 'standard': | |
global standard_rasterize, load_obj | |
import os | |
from .util import load_obj | |
# Use JIT Compiling Extensions | |
# ref: https://pytorch.org/tutorials/advanced/cpp_extension.html | |
from torch.utils.cpp_extension import load, CUDA_HOME | |
curr_dir = os.path.dirname(__file__) | |
standard_rasterize_cuda = \ | |
load(name='standard_rasterize_cuda', | |
sources=[f'{curr_dir}/rasterizer/standard_rasterize_cuda.cpp', | |
f'{curr_dir}/rasterizer/standard_rasterize_cuda_kernel.cu'], | |
extra_cuda_cflags=['-std=c++14', '-ccbin=$$(which gcc-7)']) # cuda10.2 is not compatible with gcc9. Specify gcc 7 | |
from standard_rasterize_cuda import standard_rasterize | |
# If JIT does not work, try manually installation first | |
# 1. see instruction here: pixielib/utils/rasterizer/INSTALL.md | |
# 2. add this: "from .rasterizer.standard_rasterize_cuda import standard_rasterize" here | |
class StandardRasterizer(nn.Module): | |
""" Alg: https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation | |
Notice: | |
x,y,z are in image space, normalized to [-1, 1] | |
can render non-squared image | |
not differentiable | |
""" | |
def __init__(self, height, width=None): | |
""" | |
use fixed raster_settings for rendering faces | |
""" | |
super().__init__() | |
if width is None: | |
width = height | |
self.h = h = height | |
self.w = w = width | |
def forward(self, vertices, faces, attributes=None, h=None, w=None): | |
device = vertices.device | |
if h is None: | |
h = self.h | |
if w is None: | |
w = self.h | |
bz = vertices.shape[0] | |
depth_buffer = torch.zeros([bz, h, w]).float().to(device) + 1e6 | |
triangle_buffer = torch.zeros([bz, h, w]).int().to(device) - 1 | |
baryw_buffer = torch.zeros([bz, h, w, 3]).float().to(device) | |
vert_vis = torch.zeros([bz, vertices.shape[1]]).float().to(device) | |
vertices = vertices.clone().float() | |
vertices[..., 0] = vertices[..., 0] * w / 2 + w / 2 | |
vertices[..., 1] = vertices[..., 1] * h / 2 + h / 2 | |
vertices[..., 2] = vertices[..., 2] * w / 2 | |
f_vs = util.face_vertices(vertices, faces) | |
standard_rasterize(f_vs, depth_buffer, triangle_buffer, baryw_buffer, | |
h, w) | |
pix_to_face = triangle_buffer[:, :, :, None].long() | |
bary_coords = baryw_buffer[:, :, :, None, :] | |
vismask = (pix_to_face > -1).float() | |
D = attributes.shape[-1] | |
attributes = attributes.clone() | |
attributes = attributes.view(attributes.shape[0] * attributes.shape[1], | |
3, attributes.shape[-1]) | |
N, H, W, K, _ = bary_coords.shape | |
mask = pix_to_face == -1 | |
pix_to_face = pix_to_face.clone() | |
pix_to_face[mask] = 0 | |
idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D) | |
pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D) | |
pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2) | |
pixel_vals[mask] = 0 # Replace masked values in output. | |
pixel_vals = pixel_vals[:, :, :, 0].permute(0, 3, 1, 2) | |
pixel_vals = torch.cat( | |
[pixel_vals, vismask[:, :, :, 0][:, None, :, :]], dim=1) | |
return pixel_vals | |
class Pytorch3dRasterizer(nn.Module): | |
""" Borrowed from https://github.com/facebookresearch/pytorch3d | |
This class implements methods for rasterizing a batch of heterogenous Meshes. | |
Notice: | |
x,y,z are in image space, normalized | |
can only render squared image now | |
""" | |
def __init__(self, image_size=224): | |
""" | |
use fixed raster_settings for rendering faces | |
""" | |
super().__init__() | |
raster_settings = { | |
'image_size': image_size, | |
'blur_radius': 0.0, | |
'faces_per_pixel': 1, | |
'bin_size': None, | |
'max_faces_per_bin': None, | |
'perspective_correct': False, | |
} | |
raster_settings = util.dict2obj(raster_settings) | |
self.raster_settings = raster_settings | |
def forward(self, vertices, faces, attributes=None, h=None, w=None): | |
fixed_vertices = vertices.clone() | |
fixed_vertices[..., :2] = -fixed_vertices[..., :2] | |
meshes_screen = Meshes(verts=fixed_vertices.float(), | |
faces=faces.long()) | |
raster_settings = self.raster_settings | |
pix_to_face, zbuf, bary_coords, dists = rasterize_meshes( | |
meshes_screen, | |
image_size=raster_settings.image_size, | |
blur_radius=raster_settings.blur_radius, | |
faces_per_pixel=raster_settings.faces_per_pixel, | |
bin_size=raster_settings.bin_size, | |
max_faces_per_bin=raster_settings.max_faces_per_bin, | |
perspective_correct=raster_settings.perspective_correct, | |
) | |
vismask = (pix_to_face > -1).float() | |
D = attributes.shape[-1] | |
attributes = attributes.clone() | |
attributes = attributes.view(attributes.shape[0] * attributes.shape[1], | |
3, attributes.shape[-1]) | |
N, H, W, K, _ = bary_coords.shape | |
mask = pix_to_face == -1 | |
pix_to_face = pix_to_face.clone() | |
pix_to_face[mask] = 0 | |
idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D) | |
pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D) | |
pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2) | |
pixel_vals[mask] = 0 # Replace masked values in output. | |
pixel_vals = pixel_vals[:, :, :, 0].permute(0, 3, 1, 2) | |
pixel_vals = torch.cat( | |
[pixel_vals, vismask[:, :, :, 0][:, None, :, :]], dim=1) | |
return pixel_vals | |
class SRenderY(nn.Module): | |
def __init__(self, | |
image_size, | |
obj_filename, | |
uv_size=256, | |
rasterizer_type='standard'): | |
super(SRenderY, self).__init__() | |
self.image_size = image_size | |
self.uv_size = uv_size | |
if rasterizer_type == 'pytorch3d': | |
self.rasterizer = Pytorch3dRasterizer(image_size) | |
self.uv_rasterizer = Pytorch3dRasterizer(uv_size) | |
verts, faces, aux = load_obj(obj_filename) | |
uvcoords = aux.verts_uvs[None, ...] # (N, V, 2) | |
uvfaces = faces.textures_idx[None, ...] # (N, F, 3) | |
faces = faces.verts_idx[None, ...] | |
elif rasterizer_type == 'standard': | |
self.rasterizer = StandardRasterizer(image_size) | |
self.uv_rasterizer = StandardRasterizer(uv_size) | |
verts, uvcoords, faces, uvfaces = load_obj(obj_filename) | |
verts = verts[None, ...] | |
uvcoords = uvcoords[None, ...] | |
faces = faces[None, ...] | |
uvfaces = uvfaces[None, ...] | |
else: | |
NotImplementedError | |
# faces | |
dense_triangles = util.generate_triangles(uv_size, uv_size) | |
self.register_buffer( | |
'dense_faces', | |
torch.from_numpy(dense_triangles).long()[None, :, :]) | |
self.register_buffer('faces', faces) | |
self.register_buffer('raw_uvcoords', uvcoords) | |
# uv coords | |
uvcoords = torch.cat([uvcoords, uvcoords[:, :, 0:1] * 0. + 1.], | |
-1) # [bz, ntv, 3] | |
uvcoords = uvcoords * 2 - 1 | |
uvcoords[..., 1] = -uvcoords[..., 1] | |
face_uvcoords = util.face_vertices(uvcoords, uvfaces) | |
self.register_buffer('uvcoords', uvcoords) | |
self.register_buffer('uvfaces', uvfaces) | |
self.register_buffer('face_uvcoords', face_uvcoords) | |
# shape colors, for rendering shape overlay | |
colors = torch.tensor([180, 180, 180])[None, None, :].repeat( | |
1, | |
faces.max() + 1, 1).float() / 255. | |
face_colors = util.face_vertices(colors, faces) | |
self.register_buffer('vertex_colors', colors) | |
self.register_buffer('face_colors', face_colors) | |
# SH factors for lighting | |
pi = np.pi | |
constant_factor = torch.tensor([ | |
1 / np.sqrt(4 * pi), ((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))), | |
((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))), ((2 * pi) / 3) * | |
(np.sqrt(3 / (4 * pi))), (pi / 4) * (3) * (np.sqrt(5 / (12 * pi))), | |
(pi / 4) * (3) * (np.sqrt(5 / (12 * pi))), | |
(pi / 4) * (3) * (np.sqrt(5 / (12 * pi))), | |
(pi / 4) * (3 / 2) * (np.sqrt(5 / (12 * pi))), | |
(pi / 4) * (1 / 2) * (np.sqrt(5 / (4 * pi))) | |
]).float() | |
self.register_buffer('constant_factor', constant_factor) | |
def forward(self, | |
vertices, | |
transformed_vertices, | |
albedos, | |
lights=None, | |
light_type='point', | |
background=None, | |
h=None, | |
w=None): | |
''' | |
-- Texture Rendering | |
vertices: [batch_size, V, 3], vertices in world space, for calculating normals, then shading | |
transformed_vertices: [batch_size, V, 3], rnage:[-1,1], projected vertices, in image space, for rasterization | |
albedos: [batch_size, 3, h, w], uv map | |
lights: | |
spherical homarnic: [N, 9(shcoeff), 3(rgb)] | |
points/directional lighting: [N, n_lights, 6(xyzrgb)] | |
light_type: | |
point or directional | |
''' | |
batch_size = vertices.shape[0] | |
# normalize z to 10-90 for raterization (in pytorch3d, near far: 0-100) | |
transformed_vertices = transformed_vertices.clone() | |
transformed_vertices[:, :, | |
2] = transformed_vertices[:, :, | |
2] - transformed_vertices[:, :, | |
2].min( | |
) | |
transformed_vertices[:, :, | |
2] = transformed_vertices[:, :, | |
2] / transformed_vertices[:, :, | |
2].max( | |
) | |
transformed_vertices[:, :, 2] = transformed_vertices[:, :, 2] * 80 + 10 | |
# attributes | |
face_vertices = util.face_vertices( | |
vertices, self.faces.expand(batch_size, -1, -1)) | |
normals = util.vertex_normals(vertices, | |
self.faces.expand(batch_size, -1, -1)) | |
face_normals = util.face_vertices( | |
normals, self.faces.expand(batch_size, -1, -1)) | |
transformed_normals = util.vertex_normals( | |
transformed_vertices, self.faces.expand(batch_size, -1, -1)) | |
transformed_face_normals = util.face_vertices( | |
transformed_normals, self.faces.expand(batch_size, -1, -1)) | |
attributes = torch.cat([ | |
self.face_uvcoords.expand(batch_size, -1, -1, -1), | |
transformed_face_normals.detach(), | |
face_vertices.detach(), face_normals | |
], -1) | |
# rasterize | |
rendering = self.rasterizer(transformed_vertices, | |
self.faces.expand(batch_size, -1, -1), | |
attributes, h, w) | |
#### | |
# vis mask | |
alpha_images = rendering[:, -1, :, :][:, None, :, :].detach() | |
# albedo | |
uvcoords_images = rendering[:, :3, :, :] | |
grid = (uvcoords_images).permute(0, 2, 3, 1)[:, :, :, :2] | |
albedo_images = F.grid_sample(albedos, grid, align_corners=False) | |
# visible mask for pixels with positive normal direction | |
transformed_normal_map = rendering[:, 3:6, :, :].detach() | |
pos_mask = (transformed_normal_map[:, 2:, :, :] < -0.05).float() | |
# shading | |
normal_images = rendering[:, 9:12, :, :] | |
if lights is not None: | |
if lights.shape[1] == 9: | |
shading_images = self.add_SHlight(normal_images, lights) | |
else: | |
if light_type == 'point': | |
vertice_images = rendering[:, 6:9, :, :].detach() | |
shading = self.add_pointlight( | |
vertice_images.permute(0, 2, 3, | |
1).reshape([batch_size, -1, 3]), | |
normal_images.permute(0, 2, 3, | |
1).reshape([batch_size, -1, 3]), | |
lights) | |
shading_images = shading.reshape([ | |
batch_size, albedo_images.shape[2], | |
albedo_images.shape[3], 3 | |
]).permute(0, 3, 1, 2) | |
else: | |
shading = self.add_directionlight( | |
normal_images.permute(0, 2, 3, | |
1).reshape([batch_size, -1, 3]), | |
lights) | |
shading_images = shading.reshape([ | |
batch_size, albedo_images.shape[2], | |
albedo_images.shape[3], 3 | |
]).permute(0, 3, 1, 2) | |
images = albedo_images * shading_images | |
else: | |
images = albedo_images | |
shading_images = images.detach() * 0. | |
if background is None: | |
images = images*alpha_images + \ | |
torch.ones_like(images).to(vertices.device)*(1-alpha_images) | |
else: | |
# background = F.interpolate(background, [self.image_size, self.image_size]) | |
images = images * alpha_images + background.contiguous() * ( | |
1 - alpha_images) | |
outputs = { | |
'images': images, | |
'albedo_images': albedo_images, | |
'alpha_images': alpha_images, | |
'pos_mask': pos_mask, | |
'shading_images': shading_images, | |
'grid': grid, | |
'normals': normals, | |
'normal_images': normal_images, | |
'transformed_normals': transformed_normals, | |
} | |
return outputs | |
def add_SHlight(self, normal_images, sh_coeff): | |
''' | |
sh_coeff: [bz, 9, 3] | |
''' | |
N = normal_images | |
sh = torch.stack([ | |
N[:, 0] * 0. + 1., N[:, 0], N[:, 1], N[:, 2], N[:, 0] * N[:, 1], | |
N[:, 0] * N[:, 2], N[:, 1] * N[:, 2], N[:, 0]**2 - N[:, 1]**2, 3 * | |
(N[:, 2]**2) - 1 | |
], 1) # [bz, 9, h, w] | |
sh = sh * self.constant_factor[None, :, None, None] | |
# [bz, 9, 3, h, w] | |
shading = torch.sum( | |
sh_coeff[:, :, :, None, None] * sh[:, :, None, :, :], 1) | |
return shading | |
def add_pointlight(self, vertices, normals, lights): | |
''' | |
vertices: [bz, nv, 3] | |
lights: [bz, nlight, 6] | |
returns: | |
shading: [bz, nv, 3] | |
''' | |
light_positions = lights[:, :, :3] | |
light_intensities = lights[:, :, 3:] | |
directions_to_lights = F.normalize(light_positions[:, :, None, :] - | |
vertices[:, None, :, :], | |
dim=3) | |
# normals_dot_lights = torch.clamp((normals[:,None,:,:]*directions_to_lights).sum(dim=3), 0., 1.) | |
normals_dot_lights = (normals[:, None, :, :] * | |
directions_to_lights).sum(dim=3) | |
shading = normals_dot_lights[:, :, :, | |
None] * light_intensities[:, :, None, :] | |
return shading.mean(1) | |
def add_directionlight(self, normals, lights): | |
''' | |
normals: [bz, nv, 3] | |
lights: [bz, nlight, 6] | |
returns: | |
shading: [bz, nv, 3] | |
''' | |
light_direction = lights[:, :, :3] | |
light_intensities = lights[:, :, 3:] | |
directions_to_lights = F.normalize( | |
light_direction[:, :, None, :].expand(-1, -1, normals.shape[1], | |
-1), | |
dim=3) | |
# normals_dot_lights = torch.clamp((normals[:,None,:,:]*directions_to_lights).sum(dim=3), 0., 1.) | |
# normals_dot_lights = (normals[:,None,:,:]*directions_to_lights).sum(dim=3) | |
normals_dot_lights = torch.clamp( | |
(normals[:, None, :, :] * directions_to_lights).sum(dim=3), 0., 1.) | |
shading = normals_dot_lights[:, :, :, | |
None] * light_intensities[:, :, None, :] | |
return shading.mean(1) | |
def render_shape(self, | |
vertices, | |
transformed_vertices, | |
colors=None, | |
background=None, | |
detail_normal_images=None, | |
lights=None, | |
return_grid=False, | |
uv_detail_normals=None, | |
h=None, | |
w=None): | |
''' | |
-- rendering shape with detail normal map | |
''' | |
batch_size = vertices.shape[0] | |
if lights is None: | |
light_positions = torch.tensor([ | |
[-5, 5, -5], | |
[5, 5, -5], | |
[-5, -5, -5], | |
[5, -5, -5], | |
[0, 0, -5], | |
])[None, :, :].expand(batch_size, -1, -1).float() | |
light_intensities = torch.ones_like(light_positions).float() * 1.7 | |
lights = torch.cat((light_positions, light_intensities), | |
2).to(vertices.device) | |
# normalize z to 10-90 for raterization (in pytorch3d, near far: 0-100) | |
transformed_vertices = transformed_vertices.clone() | |
transformed_vertices[:, :, | |
2] = transformed_vertices[:, :, | |
2] - transformed_vertices[:, :, | |
2].min( | |
) | |
transformed_vertices[:, :, | |
2] = transformed_vertices[:, :, | |
2] / transformed_vertices[:, :, | |
2].max( | |
) | |
transformed_vertices[:, :, 2] = transformed_vertices[:, :, 2] * 80 + 10 | |
# Attributes | |
face_vertices = util.face_vertices( | |
vertices, self.faces.expand(batch_size, -1, -1)) | |
normals = util.vertex_normals(vertices, | |
self.faces.expand(batch_size, -1, -1)) | |
face_normals = util.face_vertices( | |
normals, self.faces.expand(batch_size, -1, -1)) | |
transformed_normals = util.vertex_normals( | |
transformed_vertices, self.faces.expand(batch_size, -1, -1)) | |
transformed_face_normals = util.face_vertices( | |
transformed_normals, self.faces.expand(batch_size, -1, -1)) | |
if colors is None: | |
colors = self.face_colors.expand(batch_size, -1, -1, -1) | |
attributes = torch.cat([ | |
colors, | |
transformed_face_normals.detach(), | |
face_vertices.detach(), face_normals, | |
self.face_uvcoords.expand(batch_size, -1, -1, -1) | |
], -1) | |
# rasterize | |
rendering = self.rasterizer(transformed_vertices, | |
self.faces.expand(batch_size, -1, -1), | |
attributes, h, w) | |
#### | |
alpha_images = rendering[:, -1, :, :][:, None, :, :].detach() | |
# albedo | |
albedo_images = rendering[:, :3, :, :] | |
# mask | |
transformed_normal_map = rendering[:, 3:6, :, :].detach() | |
pos_mask = (transformed_normal_map[:, 2:, :, :] < 0).float() | |
# shading | |
normal_images = rendering[:, 9:12, :, :].detach() | |
vertice_images = rendering[:, 6:9, :, :].detach() | |
if detail_normal_images is not None: | |
normal_images = detail_normal_images | |
if uv_detail_normals is not None: | |
uvcoords_images = rendering[:, 12:15, :, :] | |
grid = (uvcoords_images).permute(0, 2, 3, 1)[:, :, :, :2] | |
detail_normal_images = F.grid_sample(uv_detail_normals, | |
grid, | |
align_corners=False) | |
normal_images = detail_normal_images | |
shading = self.add_directionlight( | |
normal_images.permute(0, 2, 3, 1).reshape([batch_size, -1, 3]), | |
lights) | |
shading_images = shading.reshape( | |
[batch_size, albedo_images.shape[2], albedo_images.shape[3], | |
3]).permute(0, 3, 1, 2).contiguous() | |
shaded_images = albedo_images * shading_images | |
if background is None: | |
shape_images = shaded_images*alpha_images + \ | |
torch.ones_like(shaded_images).to( | |
vertices.device)*(1-alpha_images) | |
else: | |
# background = F.interpolate(background, [self.image_size, self.image_size]) | |
shape_images = shaded_images*alpha_images + \ | |
background.contiguous()*(1-alpha_images) | |
if return_grid: | |
uvcoords_images = rendering[:, 12:15, :, :] | |
grid = (uvcoords_images).permute(0, 2, 3, 1)[:, :, :, :2] | |
return shape_images, normal_images, grid | |
else: | |
return shape_images | |
def render_depth(self, transformed_vertices): | |
''' | |
-- rendering depth | |
''' | |
transformed_vertices = transformed_vertices.clone() | |
batch_size = transformed_vertices.shape[0] | |
transformed_vertices[:, :, | |
2] = transformed_vertices[:, :, | |
2] - transformed_vertices[:, :, | |
2].min( | |
) | |
z = -transformed_vertices[:, :, 2:].repeat(1, 1, 3) | |
z = z - z.min() | |
z = z / z.max() | |
# Attributes | |
attributes = util.face_vertices(z, | |
self.faces.expand(batch_size, -1, -1)) | |
# rasterize | |
rendering = self.rasterizer(transformed_vertices, | |
self.faces.expand(batch_size, -1, -1), | |
attributes) | |
#### | |
alpha_images = rendering[:, -1, :, :][:, None, :, :].detach() | |
depth_images = rendering[:, :1, :, :] | |
return depth_images | |
def render_colors(self, transformed_vertices, colors, h=None, w=None): | |
''' | |
-- rendering colors: could be rgb color/ normals, etc | |
colors: [bz, num of vertices, 3] | |
''' | |
transformed_vertices = transformed_vertices.clone() | |
batch_size = colors.shape[0] | |
# normalize z to 10-90 for raterization (in pytorch3d, near far: 0-100) | |
transformed_vertices[:, :, | |
2] = transformed_vertices[:, :, | |
2] - transformed_vertices[:, :, | |
2].min( | |
) | |
transformed_vertices[:, :, | |
2] = transformed_vertices[:, :, | |
2] / transformed_vertices[:, :, | |
2].max( | |
) | |
transformed_vertices[:, :, 2] = transformed_vertices[:, :, 2] * 80 + 10 | |
# Attributes | |
attributes = util.face_vertices(colors, | |
self.faces.expand(batch_size, -1, -1)) | |
# rasterize | |
rendering = self.rasterizer(transformed_vertices, | |
self.faces.expand(batch_size, -1, -1), | |
attributes, | |
h=h, | |
w=w) | |
#### | |
alpha_images = rendering[:, [-1], :, :].detach() | |
images = rendering[:, :3, :, :] * alpha_images | |
return images | |
def world2uv(self, vertices): | |
''' | |
project vertices from world space to uv space | |
vertices: [bz, V, 3] | |
uv_vertices: [bz, 3, h, w] | |
''' | |
batch_size = vertices.shape[0] | |
face_vertices = util.face_vertices( | |
vertices, self.faces.expand(batch_size, -1, -1)) | |
uv_vertices = self.uv_rasterizer( | |
self.uvcoords.expand(batch_size, -1, -1), | |
self.uvfaces.expand(batch_size, -1, -1), face_vertices)[:, :3] | |
return uv_vertices | |