Spaces:
Running
on
A10G
Running
on
A10G
from audiocraft.data.audio import audio_write | |
import audiocraft.models | |
import numpy as np | |
import pandas as pd | |
import os | |
import torch | |
# set hparams | |
output_dir = 'example_1' ### change this output directory | |
duration = 30 | |
num_samples = 5 | |
bs = 1 | |
# load your model | |
musicgen = audiocraft.models.MusicGen.get_pretrained('./ckpt/musicongen') ### change this path | |
musicgen.set_generation_params(duration=duration, extend_stride=duration//2, top_k = 250) | |
chords = ['C G A:min F', | |
'A:min F C G', | |
'C F G F', | |
'C A:min F G', | |
'D:min G C A:min', | |
] | |
descriptions = ["A laid-back blues shuffle with a relaxed tempo, warm guitar tones, and a comfortable groove, perfect for a slow dance or a night in. Instruments: electric guitar, bass, drums."] * num_samples | |
bpms = [120] * num_samples | |
meters = [4] * num_samples | |
wav = [] | |
for i in range(num_samples//bs): | |
print(f"starting {i} batch...") | |
temp = musicgen.generate_with_chords_and_beats(descriptions[i*bs:(i+1)*bs], | |
chords[i*bs:(i+1)*bs], | |
bpms[i*bs:(i+1)*bs], | |
meters[i*bs:(i+1)*bs] | |
) | |
wav.extend(temp.cpu()) | |
# save and display generated audio | |
for idx, one_wav in enumerate(wav): | |
sav_path = os.path.join('./output_samples', output_dir, chords[idx] + "|" + descriptions[idx]).replace(" ", "_") | |
audio_write(sav_path, one_wav.cpu(), musicgen.sample_rate, strategy='loudness', loudness_compressor=True) |