Spaces:
Running
on
L40S
Running
on
L40S
from contextlib import contextmanager | |
import torch | |
def init_weights_on_device(device=torch.device("meta"), include_buffers: bool = False): | |
old_register_parameter = torch.nn.Module.register_parameter | |
if include_buffers: | |
old_register_buffer = torch.nn.Module.register_buffer | |
def register_empty_parameter(module, name, param): | |
old_register_parameter(module, name, param) | |
if param is not None: | |
param_cls = type(module._parameters[name]) | |
kwargs = module._parameters[name].__dict__ | |
kwargs["requires_grad"] = param.requires_grad | |
module._parameters[name] = param_cls( | |
module._parameters[name].to(device), **kwargs | |
) | |
def register_empty_buffer(module, name, buffer, persistent=True): | |
old_register_buffer(module, name, buffer, persistent=persistent) | |
if buffer is not None: | |
module._buffers[name] = module._buffers[name].to(device) | |
def patch_tensor_constructor(fn): | |
def wrapper(*args, **kwargs): | |
kwargs["device"] = device | |
return fn(*args, **kwargs) | |
return wrapper | |
if include_buffers: | |
tensor_constructors_to_patch = { | |
torch_function_name: getattr(torch, torch_function_name) | |
for torch_function_name in ["empty", "zeros", "ones", "full"] | |
} | |
else: | |
tensor_constructors_to_patch = {} | |
try: | |
torch.nn.Module.register_parameter = register_empty_parameter | |
if include_buffers: | |
torch.nn.Module.register_buffer = register_empty_buffer | |
for torch_function_name in tensor_constructors_to_patch.keys(): | |
setattr( | |
torch, | |
torch_function_name, | |
patch_tensor_constructor(getattr(torch, torch_function_name)), | |
) | |
yield | |
finally: | |
torch.nn.Module.register_parameter = old_register_parameter | |
if include_buffers: | |
torch.nn.Module.register_buffer = old_register_buffer | |
for ( | |
torch_function_name, | |
old_torch_function, | |
) in tensor_constructors_to_patch.items(): | |
setattr(torch, torch_function_name, old_torch_function) |