Spaces:
Running
Running
| # Modified from ``https://github.com/openai/CLIP'' and ``https://github.com/mlfoundations/open_clip'' | |
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import logging | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torchvision.transforms as T | |
| from .attention import flash_attention | |
| from .tokenizers import HuggingfaceTokenizer | |
| from .xlm_roberta import XLMRoberta | |
| __all__ = [ | |
| 'XLMRobertaCLIP', | |
| 'clip_xlm_roberta_vit_h_14', | |
| 'CLIPModel', | |
| ] | |
| def pos_interpolate(pos, seq_len): | |
| if pos.size(1) == seq_len: | |
| return pos | |
| else: | |
| src_grid = int(math.sqrt(pos.size(1))) | |
| tar_grid = int(math.sqrt(seq_len)) | |
| n = pos.size(1) - src_grid * src_grid | |
| return torch.cat([ | |
| pos[:, :n], | |
| F.interpolate( | |
| pos[:, n:].float().reshape(1, src_grid, src_grid, -1).permute( | |
| 0, 3, 1, 2), | |
| size=(tar_grid, tar_grid), | |
| mode='bicubic', | |
| align_corners=False).flatten(2).transpose(1, 2) | |
| ], | |
| dim=1) | |
| class QuickGELU(nn.Module): | |
| def forward(self, x): | |
| return x * torch.sigmoid(1.702 * x) | |
| class LayerNorm(nn.LayerNorm): | |
| def forward(self, x): | |
| return super().forward(x.float()).type_as(x) | |
| class SelfAttention(nn.Module): | |
| def __init__(self, | |
| dim, | |
| num_heads, | |
| causal=False, | |
| attn_dropout=0.0, | |
| proj_dropout=0.0): | |
| assert dim % num_heads == 0 | |
| super().__init__() | |
| self.dim = dim | |
| self.num_heads = num_heads | |
| self.head_dim = dim // num_heads | |
| self.causal = causal | |
| self.attn_dropout = attn_dropout | |
| self.proj_dropout = proj_dropout | |
| # layers | |
| self.to_qkv = nn.Linear(dim, dim * 3) | |
| self.proj = nn.Linear(dim, dim) | |
| def forward(self, x): | |
| """ | |
| x: [B, L, C]. | |
| """ | |
| b, s, c, n, d = *x.size(), self.num_heads, self.head_dim | |
| # compute query, key, value | |
| q, k, v = self.to_qkv(x).view(b, s, 3, n, d).unbind(2) | |
| # compute attention | |
| p = self.attn_dropout if self.training else 0.0 | |
| x = flash_attention(q, k, v, dropout_p=p, causal=self.causal, version=2) | |
| x = x.reshape(b, s, c) | |
| # output | |
| x = self.proj(x) | |
| x = F.dropout(x, self.proj_dropout, self.training) | |
| return x | |
| class SwiGLU(nn.Module): | |
| def __init__(self, dim, mid_dim): | |
| super().__init__() | |
| self.dim = dim | |
| self.mid_dim = mid_dim | |
| # layers | |
| self.fc1 = nn.Linear(dim, mid_dim) | |
| self.fc2 = nn.Linear(dim, mid_dim) | |
| self.fc3 = nn.Linear(mid_dim, dim) | |
| def forward(self, x): | |
| x = F.silu(self.fc1(x)) * self.fc2(x) | |
| x = self.fc3(x) | |
| return x | |
| class AttentionBlock(nn.Module): | |
| def __init__(self, | |
| dim, | |
| mlp_ratio, | |
| num_heads, | |
| post_norm=False, | |
| causal=False, | |
| activation='quick_gelu', | |
| attn_dropout=0.0, | |
| proj_dropout=0.0, | |
| norm_eps=1e-5): | |
| assert activation in ['quick_gelu', 'gelu', 'swi_glu'] | |
| super().__init__() | |
| self.dim = dim | |
| self.mlp_ratio = mlp_ratio | |
| self.num_heads = num_heads | |
| self.post_norm = post_norm | |
| self.causal = causal | |
| self.norm_eps = norm_eps | |
| # layers | |
| self.norm1 = LayerNorm(dim, eps=norm_eps) | |
| self.attn = SelfAttention(dim, num_heads, causal, attn_dropout, | |
| proj_dropout) | |
| self.norm2 = LayerNorm(dim, eps=norm_eps) | |
| if activation == 'swi_glu': | |
| self.mlp = SwiGLU(dim, int(dim * mlp_ratio)) | |
| else: | |
| self.mlp = nn.Sequential( | |
| nn.Linear(dim, int(dim * mlp_ratio)), | |
| QuickGELU() if activation == 'quick_gelu' else nn.GELU(), | |
| nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout)) | |
| def forward(self, x): | |
| if self.post_norm: | |
| x = x + self.norm1(self.attn(x)) | |
| x = x + self.norm2(self.mlp(x)) | |
| else: | |
| x = x + self.attn(self.norm1(x)) | |
| x = x + self.mlp(self.norm2(x)) | |
| return x | |
| class AttentionPool(nn.Module): | |
| def __init__(self, | |
| dim, | |
| mlp_ratio, | |
| num_heads, | |
| activation='gelu', | |
| proj_dropout=0.0, | |
| norm_eps=1e-5): | |
| assert dim % num_heads == 0 | |
| super().__init__() | |
| self.dim = dim | |
| self.mlp_ratio = mlp_ratio | |
| self.num_heads = num_heads | |
| self.head_dim = dim // num_heads | |
| self.proj_dropout = proj_dropout | |
| self.norm_eps = norm_eps | |
| # layers | |
| gain = 1.0 / math.sqrt(dim) | |
| self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim)) | |
| self.to_q = nn.Linear(dim, dim) | |
| self.to_kv = nn.Linear(dim, dim * 2) | |
| self.proj = nn.Linear(dim, dim) | |
| self.norm = LayerNorm(dim, eps=norm_eps) | |
| self.mlp = nn.Sequential( | |
| nn.Linear(dim, int(dim * mlp_ratio)), | |
| QuickGELU() if activation == 'quick_gelu' else nn.GELU(), | |
| nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout)) | |
| def forward(self, x): | |
| """ | |
| x: [B, L, C]. | |
| """ | |
| b, s, c, n, d = *x.size(), self.num_heads, self.head_dim | |
| # compute query, key, value | |
| q = self.to_q(self.cls_embedding).view(1, 1, n, d).expand(b, -1, -1, -1) | |
| k, v = self.to_kv(x).view(b, s, 2, n, d).unbind(2) | |
| # compute attention | |
| x = flash_attention(q, k, v, version=2) | |
| x = x.reshape(b, 1, c) | |
| # output | |
| x = self.proj(x) | |
| x = F.dropout(x, self.proj_dropout, self.training) | |
| # mlp | |
| x = x + self.mlp(self.norm(x)) | |
| return x[:, 0] | |
| class VisionTransformer(nn.Module): | |
| def __init__(self, | |
| image_size=224, | |
| patch_size=16, | |
| dim=768, | |
| mlp_ratio=4, | |
| out_dim=512, | |
| num_heads=12, | |
| num_layers=12, | |
| pool_type='token', | |
| pre_norm=True, | |
| post_norm=False, | |
| activation='quick_gelu', | |
| attn_dropout=0.0, | |
| proj_dropout=0.0, | |
| embedding_dropout=0.0, | |
| norm_eps=1e-5): | |
| if image_size % patch_size != 0: | |
| print( | |
| '[WARNING] image_size is not divisible by patch_size', | |
| flush=True) | |
| assert pool_type in ('token', 'token_fc', 'attn_pool') | |
| out_dim = out_dim or dim | |
| super().__init__() | |
| self.image_size = image_size | |
| self.patch_size = patch_size | |
| self.num_patches = (image_size // patch_size)**2 | |
| self.dim = dim | |
| self.mlp_ratio = mlp_ratio | |
| self.out_dim = out_dim | |
| self.num_heads = num_heads | |
| self.num_layers = num_layers | |
| self.pool_type = pool_type | |
| self.post_norm = post_norm | |
| self.norm_eps = norm_eps | |
| # embeddings | |
| gain = 1.0 / math.sqrt(dim) | |
| self.patch_embedding = nn.Conv2d( | |
| 3, | |
| dim, | |
| kernel_size=patch_size, | |
| stride=patch_size, | |
| bias=not pre_norm) | |
| if pool_type in ('token', 'token_fc'): | |
| self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim)) | |
| self.pos_embedding = nn.Parameter(gain * torch.randn( | |
| 1, self.num_patches + | |
| (1 if pool_type in ('token', 'token_fc') else 0), dim)) | |
| self.dropout = nn.Dropout(embedding_dropout) | |
| # transformer | |
| self.pre_norm = LayerNorm(dim, eps=norm_eps) if pre_norm else None | |
| self.transformer = nn.Sequential(*[ | |
| AttentionBlock(dim, mlp_ratio, num_heads, post_norm, False, | |
| activation, attn_dropout, proj_dropout, norm_eps) | |
| for _ in range(num_layers) | |
| ]) | |
| self.post_norm = LayerNorm(dim, eps=norm_eps) | |
| # head | |
| if pool_type == 'token': | |
| self.head = nn.Parameter(gain * torch.randn(dim, out_dim)) | |
| elif pool_type == 'token_fc': | |
| self.head = nn.Linear(dim, out_dim) | |
| elif pool_type == 'attn_pool': | |
| self.head = AttentionPool(dim, mlp_ratio, num_heads, activation, | |
| proj_dropout, norm_eps) | |
| def forward(self, x, interpolation=False, use_31_block=False): | |
| b = x.size(0) | |
| # embeddings | |
| x = self.patch_embedding(x).flatten(2).permute(0, 2, 1) | |
| if self.pool_type in ('token', 'token_fc'): | |
| x = torch.cat([self.cls_embedding.expand(b, -1, -1), x], dim=1) | |
| if interpolation: | |
| e = pos_interpolate(self.pos_embedding, x.size(1)) | |
| else: | |
| e = self.pos_embedding | |
| x = self.dropout(x + e) | |
| if self.pre_norm is not None: | |
| x = self.pre_norm(x) | |
| # transformer | |
| if use_31_block: | |
| x = self.transformer[:-1](x) | |
| return x | |
| else: | |
| x = self.transformer(x) | |
| return x | |
| class XLMRobertaWithHead(XLMRoberta): | |
| def __init__(self, **kwargs): | |
| self.out_dim = kwargs.pop('out_dim') | |
| super().__init__(**kwargs) | |
| # head | |
| mid_dim = (self.dim + self.out_dim) // 2 | |
| self.head = nn.Sequential( | |
| nn.Linear(self.dim, mid_dim, bias=False), nn.GELU(), | |
| nn.Linear(mid_dim, self.out_dim, bias=False)) | |
| def forward(self, ids): | |
| # xlm-roberta | |
| x = super().forward(ids) | |
| # average pooling | |
| mask = ids.ne(self.pad_id).unsqueeze(-1).to(x) | |
| x = (x * mask).sum(dim=1) / mask.sum(dim=1) | |
| # head | |
| x = self.head(x) | |
| return x | |
| class XLMRobertaCLIP(nn.Module): | |
| def __init__(self, | |
| embed_dim=1024, | |
| image_size=224, | |
| patch_size=14, | |
| vision_dim=1280, | |
| vision_mlp_ratio=4, | |
| vision_heads=16, | |
| vision_layers=32, | |
| vision_pool='token', | |
| vision_pre_norm=True, | |
| vision_post_norm=False, | |
| activation='gelu', | |
| vocab_size=250002, | |
| max_text_len=514, | |
| type_size=1, | |
| pad_id=1, | |
| text_dim=1024, | |
| text_heads=16, | |
| text_layers=24, | |
| text_post_norm=True, | |
| text_dropout=0.1, | |
| attn_dropout=0.0, | |
| proj_dropout=0.0, | |
| embedding_dropout=0.0, | |
| norm_eps=1e-5): | |
| super().__init__() | |
| self.embed_dim = embed_dim | |
| self.image_size = image_size | |
| self.patch_size = patch_size | |
| self.vision_dim = vision_dim | |
| self.vision_mlp_ratio = vision_mlp_ratio | |
| self.vision_heads = vision_heads | |
| self.vision_layers = vision_layers | |
| self.vision_pre_norm = vision_pre_norm | |
| self.vision_post_norm = vision_post_norm | |
| self.activation = activation | |
| self.vocab_size = vocab_size | |
| self.max_text_len = max_text_len | |
| self.type_size = type_size | |
| self.pad_id = pad_id | |
| self.text_dim = text_dim | |
| self.text_heads = text_heads | |
| self.text_layers = text_layers | |
| self.text_post_norm = text_post_norm | |
| self.norm_eps = norm_eps | |
| # models | |
| self.visual = VisionTransformer( | |
| image_size=image_size, | |
| patch_size=patch_size, | |
| dim=vision_dim, | |
| mlp_ratio=vision_mlp_ratio, | |
| out_dim=embed_dim, | |
| num_heads=vision_heads, | |
| num_layers=vision_layers, | |
| pool_type=vision_pool, | |
| pre_norm=vision_pre_norm, | |
| post_norm=vision_post_norm, | |
| activation=activation, | |
| attn_dropout=attn_dropout, | |
| proj_dropout=proj_dropout, | |
| embedding_dropout=embedding_dropout, | |
| norm_eps=norm_eps) | |
| self.textual = XLMRobertaWithHead( | |
| vocab_size=vocab_size, | |
| max_seq_len=max_text_len, | |
| type_size=type_size, | |
| pad_id=pad_id, | |
| dim=text_dim, | |
| out_dim=embed_dim, | |
| num_heads=text_heads, | |
| num_layers=text_layers, | |
| post_norm=text_post_norm, | |
| dropout=text_dropout) | |
| self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([])) | |
| def forward(self, imgs, txt_ids): | |
| """ | |
| imgs: [B, 3, H, W] of torch.float32. | |
| - mean: [0.48145466, 0.4578275, 0.40821073] | |
| - std: [0.26862954, 0.26130258, 0.27577711] | |
| txt_ids: [B, L] of torch.long. | |
| Encoded by data.CLIPTokenizer. | |
| """ | |
| xi = self.visual(imgs) | |
| xt = self.textual(txt_ids) | |
| return xi, xt | |
| def param_groups(self): | |
| groups = [{ | |
| 'params': [ | |
| p for n, p in self.named_parameters() | |
| if 'norm' in n or n.endswith('bias') | |
| ], | |
| 'weight_decay': 0.0 | |
| }, { | |
| 'params': [ | |
| p for n, p in self.named_parameters() | |
| if not ('norm' in n or n.endswith('bias')) | |
| ] | |
| }] | |
| return groups | |
| def _clip(pretrained=False, | |
| pretrained_name=None, | |
| model_cls=XLMRobertaCLIP, | |
| return_transforms=False, | |
| return_tokenizer=False, | |
| tokenizer_padding='eos', | |
| dtype=torch.float32, | |
| device='cpu', | |
| **kwargs): | |
| # init a model on device | |
| with torch.device(device): | |
| model = model_cls(**kwargs) | |
| # set device | |
| model = model.to(dtype=dtype, device=device) | |
| output = (model,) | |
| # init transforms | |
| if return_transforms: | |
| # mean and std | |
| if 'siglip' in pretrained_name.lower(): | |
| mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5] | |
| else: | |
| mean = [0.48145466, 0.4578275, 0.40821073] | |
| std = [0.26862954, 0.26130258, 0.27577711] | |
| # transforms | |
| transforms = T.Compose([ | |
| T.Resize((model.image_size, model.image_size), | |
| interpolation=T.InterpolationMode.BICUBIC), | |
| T.ToTensor(), | |
| T.Normalize(mean=mean, std=std) | |
| ]) | |
| output += (transforms,) | |
| return output[0] if len(output) == 1 else output | |
| def clip_xlm_roberta_vit_h_14( | |
| pretrained=False, | |
| pretrained_name='open-clip-xlm-roberta-large-vit-huge-14', | |
| **kwargs): | |
| cfg = dict( | |
| embed_dim=1024, | |
| image_size=224, | |
| patch_size=14, | |
| vision_dim=1280, | |
| vision_mlp_ratio=4, | |
| vision_heads=16, | |
| vision_layers=32, | |
| vision_pool='token', | |
| activation='gelu', | |
| vocab_size=250002, | |
| max_text_len=514, | |
| type_size=1, | |
| pad_id=1, | |
| text_dim=1024, | |
| text_heads=16, | |
| text_layers=24, | |
| text_post_norm=True, | |
| text_dropout=0.1, | |
| attn_dropout=0.0, | |
| proj_dropout=0.0, | |
| embedding_dropout=0.0) | |
| cfg.update(**kwargs) | |
| return _clip(pretrained, pretrained_name, XLMRobertaCLIP, **cfg) | |
| class CLIPModel: | |
| def __init__(self, dtype, device, checkpoint_path, tokenizer_path): | |
| self.dtype = dtype | |
| self.device = device | |
| self.checkpoint_path = checkpoint_path | |
| self.tokenizer_path = tokenizer_path | |
| # init model | |
| self.model, self.transforms = clip_xlm_roberta_vit_h_14( | |
| pretrained=False, | |
| return_transforms=True, | |
| return_tokenizer=False, | |
| dtype=dtype, | |
| device=device) | |
| self.model = self.model.eval().requires_grad_(False) | |
| logging.info(f'loading {checkpoint_path}') | |
| self.model.load_state_dict( | |
| torch.load(checkpoint_path, map_location='cpu')) | |
| # init tokenizer | |
| self.tokenizer = HuggingfaceTokenizer( | |
| name=tokenizer_path, | |
| seq_len=self.model.max_text_len - 2, | |
| clean='whitespace') | |
| def visual(self, videos): | |
| # preprocess | |
| size = (self.model.image_size,) * 2 | |
| videos = torch.cat([ | |
| F.interpolate( | |
| u.transpose(0, 1), | |
| size=size, | |
| mode='bicubic', | |
| align_corners=False) for u in videos | |
| ]) | |
| videos = self.transforms.transforms[-1](videos.mul_(0.5).add_(0.5)) | |
| # forward | |
| with torch.cuda.amp.autocast(dtype=self.dtype): | |
| out = self.model.visual(videos, use_31_block=True) | |
| return out | |