Spaces:
Running
Running
| # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
| import math | |
| import numpy as np | |
| import os | |
| import torch | |
| import torch.cuda.amp as amp | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from einops import rearrange | |
| from diffusers import ModelMixin | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from .attention import flash_attention, SingleStreamMutiAttention | |
| from ..utils.multitalk_utils import get_attn_map_with_target | |
| __all__ = ['WanModel'] | |
| def sinusoidal_embedding_1d(dim, position): | |
| # preprocess | |
| assert dim % 2 == 0 | |
| half = dim // 2 | |
| position = position.type(torch.float64) | |
| # calculation | |
| sinusoid = torch.outer( | |
| position, torch.pow(10000, -torch.arange(half).to(position).div(half))) | |
| x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) | |
| return x | |
| def rope_params(max_seq_len, dim, theta=10000): | |
| assert dim % 2 == 0 | |
| freqs = torch.outer( | |
| torch.arange(max_seq_len), | |
| 1.0 / torch.pow(theta, | |
| torch.arange(0, dim, 2).to(torch.float64).div(dim))) | |
| freqs = torch.polar(torch.ones_like(freqs), freqs) | |
| return freqs | |
| def rope_apply(x, grid_sizes, freqs): | |
| s, n, c = x.size(1), x.size(2), x.size(3) // 2 | |
| freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) | |
| output = [] | |
| for i, (f, h, w) in enumerate(grid_sizes.tolist()): | |
| seq_len = f * h * w | |
| x_i = torch.view_as_complex(x[i, :s].to(torch.float64).reshape( | |
| s, n, -1, 2)) | |
| freqs_i = torch.cat([ | |
| freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), | |
| freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), | |
| freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) | |
| ], | |
| dim=-1).reshape(seq_len, 1, -1) | |
| freqs_i = freqs_i.to(device=x_i.device) | |
| x_i = torch.view_as_real(x_i * freqs_i).flatten(2) | |
| x_i = torch.cat([x_i, x[i, seq_len:]]) | |
| output.append(x_i) | |
| return torch.stack(output).float() | |
| class WanRMSNorm(nn.Module): | |
| def __init__(self, dim, eps=1e-5): | |
| super().__init__() | |
| self.dim = dim | |
| self.eps = eps | |
| self.weight = nn.Parameter(torch.ones(dim)) | |
| def forward(self, x): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L, C] | |
| """ | |
| return self._norm(x.float()).type_as(x) * self.weight | |
| def _norm(self, x): | |
| return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps) | |
| class WanLayerNorm(nn.LayerNorm): | |
| def __init__(self, dim, eps=1e-6, elementwise_affine=False): | |
| super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps) | |
| def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
| origin_dtype = inputs.dtype | |
| out = F.layer_norm( | |
| inputs.float(), | |
| self.normalized_shape, | |
| None if self.weight is None else self.weight.float(), | |
| None if self.bias is None else self.bias.float() , | |
| self.eps | |
| ).to(origin_dtype) | |
| return out | |
| class WanSelfAttention(nn.Module): | |
| def __init__(self, | |
| dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| eps=1e-6): | |
| assert dim % num_heads == 0 | |
| super().__init__() | |
| self.dim = dim | |
| self.num_heads = num_heads | |
| self.head_dim = dim // num_heads | |
| self.window_size = window_size | |
| self.qk_norm = qk_norm | |
| self.eps = eps | |
| # layers | |
| self.q = nn.Linear(dim, dim) | |
| self.k = nn.Linear(dim, dim) | |
| self.v = nn.Linear(dim, dim) | |
| self.o = nn.Linear(dim, dim) | |
| self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| def forward(self, x, seq_lens, grid_sizes, freqs, ref_target_masks=None): | |
| b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim | |
| # query, key, value function | |
| def qkv_fn(x): | |
| q = self.norm_q(self.q(x)).view(b, s, n, d) | |
| k = self.norm_k(self.k(x)).view(b, s, n, d) | |
| v = self.v(x).view(b, s, n, d) | |
| return q, k, v | |
| q, k, v = qkv_fn(x) | |
| q = rope_apply(q, grid_sizes, freqs) | |
| k = rope_apply(k, grid_sizes, freqs) | |
| x = flash_attention( | |
| q=q, | |
| k=k, | |
| v=v, | |
| k_lens=seq_lens, | |
| window_size=self.window_size | |
| ).type_as(x) | |
| # output | |
| x = x.flatten(2) | |
| x = self.o(x) | |
| with torch.no_grad(): | |
| x_ref_attn_map = get_attn_map_with_target(q.type_as(x), k.type_as(x), grid_sizes[0], | |
| ref_target_masks=ref_target_masks) | |
| return x, x_ref_attn_map | |
| class WanI2VCrossAttention(WanSelfAttention): | |
| def __init__(self, | |
| dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| eps=1e-6): | |
| super().__init__(dim, num_heads, window_size, qk_norm, eps) | |
| self.k_img = nn.Linear(dim, dim) | |
| self.v_img = nn.Linear(dim, dim) | |
| self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
| def forward(self, x, context, context_lens): | |
| context_img = context[:, :257] | |
| context = context[:, 257:] | |
| b, n, d = x.size(0), self.num_heads, self.head_dim | |
| # compute query, key, value | |
| q = self.norm_q(self.q(x)).view(b, -1, n, d) | |
| k = self.norm_k(self.k(context)).view(b, -1, n, d) | |
| v = self.v(context).view(b, -1, n, d) | |
| k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d) | |
| v_img = self.v_img(context_img).view(b, -1, n, d) | |
| img_x = flash_attention(q, k_img, v_img, k_lens=None) | |
| # compute attention | |
| x = flash_attention(q, k, v, k_lens=context_lens) | |
| # output | |
| x = x.flatten(2) | |
| img_x = img_x.flatten(2) | |
| x = x + img_x | |
| x = self.o(x) | |
| return x | |
| class WanAttentionBlock(nn.Module): | |
| def __init__(self, | |
| cross_attn_type, | |
| dim, | |
| ffn_dim, | |
| num_heads, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| cross_attn_norm=False, | |
| eps=1e-6, | |
| output_dim=768, | |
| norm_input_visual=True, | |
| class_range=24, | |
| class_interval=4): | |
| super().__init__() | |
| self.dim = dim | |
| self.ffn_dim = ffn_dim | |
| self.num_heads = num_heads | |
| self.window_size = window_size | |
| self.qk_norm = qk_norm | |
| self.cross_attn_norm = cross_attn_norm | |
| self.eps = eps | |
| # layers | |
| self.norm1 = WanLayerNorm(dim, eps) | |
| self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, eps) | |
| self.norm3 = WanLayerNorm( | |
| dim, eps, | |
| elementwise_affine=True) if cross_attn_norm else nn.Identity() | |
| self.cross_attn = WanI2VCrossAttention(dim, | |
| num_heads, | |
| (-1, -1), | |
| qk_norm, | |
| eps) | |
| self.norm2 = WanLayerNorm(dim, eps) | |
| self.ffn = nn.Sequential( | |
| nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'), | |
| nn.Linear(ffn_dim, dim)) | |
| # modulation | |
| self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) | |
| # init audio module | |
| self.audio_cross_attn = SingleStreamMutiAttention( | |
| dim=dim, | |
| encoder_hidden_states_dim=output_dim, | |
| num_heads=num_heads, | |
| qk_norm=False, | |
| qkv_bias=True, | |
| eps=eps, | |
| norm_layer=WanRMSNorm, | |
| class_range=class_range, | |
| class_interval=class_interval | |
| ) | |
| self.norm_x = WanLayerNorm(dim, eps, elementwise_affine=True) if norm_input_visual else nn.Identity() | |
| def forward( | |
| self, | |
| x, | |
| e, | |
| seq_lens, | |
| grid_sizes, | |
| freqs, | |
| context, | |
| context_lens, | |
| audio_embedding=None, | |
| ref_target_masks=None, | |
| human_num=None, | |
| ): | |
| dtype = x.dtype | |
| assert e.dtype == torch.float32 | |
| with amp.autocast(dtype=torch.float32): | |
| e = (self.modulation.to(e.device) + e).chunk(6, dim=1) | |
| assert e[0].dtype == torch.float32 | |
| # self-attention | |
| y, x_ref_attn_map = self.self_attn( | |
| (self.norm1(x).float() * (1 + e[1]) + e[0]).type_as(x), seq_lens, grid_sizes, | |
| freqs, ref_target_masks=ref_target_masks) | |
| with amp.autocast(dtype=torch.float32): | |
| x = x + y * e[2] | |
| x = x.to(dtype) | |
| # cross-attention of text | |
| x = x + self.cross_attn(self.norm3(x), context, context_lens) | |
| # cross attn of audio | |
| x_a = self.audio_cross_attn(self.norm_x(x), encoder_hidden_states=audio_embedding, | |
| shape=grid_sizes[0], x_ref_attn_map=x_ref_attn_map, human_num=human_num) | |
| x = x + x_a | |
| y = self.ffn((self.norm2(x).float() * (1 + e[4]) + e[3]).to(dtype)) | |
| with amp.autocast(dtype=torch.float32): | |
| x = x + y * e[5] | |
| x = x.to(dtype) | |
| return x | |
| class Head(nn.Module): | |
| def __init__(self, dim, out_dim, patch_size, eps=1e-6): | |
| super().__init__() | |
| self.dim = dim | |
| self.out_dim = out_dim | |
| self.patch_size = patch_size | |
| self.eps = eps | |
| # layers | |
| out_dim = math.prod(patch_size) * out_dim | |
| self.norm = WanLayerNorm(dim, eps) | |
| self.head = nn.Linear(dim, out_dim) | |
| # modulation | |
| self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5) | |
| def forward(self, x, e): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| e(Tensor): Shape [B, C] | |
| """ | |
| assert e.dtype == torch.float32 | |
| with amp.autocast(dtype=torch.float32): | |
| e = (self.modulation.to(e.device) + e.unsqueeze(1)).chunk(2, dim=1) | |
| x = (self.head(self.norm(x) * (1 + e[1]) + e[0])) | |
| return x | |
| class MLPProj(torch.nn.Module): | |
| def __init__(self, in_dim, out_dim): | |
| super().__init__() | |
| self.proj = torch.nn.Sequential( | |
| torch.nn.LayerNorm(in_dim), torch.nn.Linear(in_dim, in_dim), | |
| torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim), | |
| torch.nn.LayerNorm(out_dim)) | |
| def forward(self, image_embeds): | |
| clip_extra_context_tokens = self.proj(image_embeds) | |
| return clip_extra_context_tokens | |
| class AudioProjModel(ModelMixin, ConfigMixin): | |
| def __init__( | |
| self, | |
| seq_len=5, | |
| seq_len_vf=12, | |
| blocks=12, | |
| channels=768, | |
| intermediate_dim=512, | |
| output_dim=768, | |
| context_tokens=32, | |
| norm_output_audio=False, | |
| ): | |
| super().__init__() | |
| self.seq_len = seq_len | |
| self.blocks = blocks | |
| self.channels = channels | |
| self.input_dim = seq_len * blocks * channels | |
| self.input_dim_vf = seq_len_vf * blocks * channels | |
| self.intermediate_dim = intermediate_dim | |
| self.context_tokens = context_tokens | |
| self.output_dim = output_dim | |
| # define multiple linear layers | |
| self.proj1 = nn.Linear(self.input_dim, intermediate_dim) | |
| self.proj1_vf = nn.Linear(self.input_dim_vf, intermediate_dim) | |
| self.proj2 = nn.Linear(intermediate_dim, intermediate_dim) | |
| self.proj3 = nn.Linear(intermediate_dim, context_tokens * output_dim) | |
| self.norm = nn.LayerNorm(output_dim) if norm_output_audio else nn.Identity() | |
| def forward(self, audio_embeds, audio_embeds_vf): | |
| video_length = audio_embeds.shape[1] + audio_embeds_vf.shape[1] | |
| B, _, _, S, C = audio_embeds.shape | |
| # process audio of first frame | |
| audio_embeds = rearrange(audio_embeds, "bz f w b c -> (bz f) w b c") | |
| batch_size, window_size, blocks, channels = audio_embeds.shape | |
| audio_embeds = audio_embeds.view(batch_size, window_size * blocks * channels) | |
| # process audio of latter frame | |
| audio_embeds_vf = rearrange(audio_embeds_vf, "bz f w b c -> (bz f) w b c") | |
| batch_size_vf, window_size_vf, blocks_vf, channels_vf = audio_embeds_vf.shape | |
| audio_embeds_vf = audio_embeds_vf.view(batch_size_vf, window_size_vf * blocks_vf * channels_vf) | |
| # first projection | |
| audio_embeds = torch.relu(self.proj1(audio_embeds)) | |
| audio_embeds_vf = torch.relu(self.proj1_vf(audio_embeds_vf)) | |
| audio_embeds = rearrange(audio_embeds, "(bz f) c -> bz f c", bz=B) | |
| audio_embeds_vf = rearrange(audio_embeds_vf, "(bz f) c -> bz f c", bz=B) | |
| audio_embeds_c = torch.concat([audio_embeds, audio_embeds_vf], dim=1) | |
| batch_size_c, N_t, C_a = audio_embeds_c.shape | |
| audio_embeds_c = audio_embeds_c.view(batch_size_c*N_t, C_a) | |
| # second projection | |
| audio_embeds_c = torch.relu(self.proj2(audio_embeds_c)) | |
| context_tokens = self.proj3(audio_embeds_c).reshape(batch_size_c*N_t, self.context_tokens, self.output_dim) | |
| # normalization and reshape | |
| context_tokens = self.norm(context_tokens) | |
| context_tokens = rearrange(context_tokens, "(bz f) m c -> bz f m c", f=video_length) | |
| return context_tokens | |
| class WanModel(ModelMixin, ConfigMixin): | |
| r""" | |
| Wan diffusion backbone supporting both text-to-video and image-to-video. | |
| """ | |
| ignore_for_config = [ | |
| 'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim', 'window_size' | |
| ] | |
| _no_split_modules = ['WanAttentionBlock'] | |
| def __init__(self, | |
| model_type='i2v', | |
| patch_size=(1, 2, 2), | |
| text_len=512, | |
| in_dim=16, | |
| dim=2048, | |
| ffn_dim=8192, | |
| freq_dim=256, | |
| text_dim=4096, | |
| out_dim=16, | |
| num_heads=16, | |
| num_layers=32, | |
| window_size=(-1, -1), | |
| qk_norm=True, | |
| cross_attn_norm=True, | |
| eps=1e-6, | |
| # audio params | |
| audio_window=5, | |
| intermediate_dim=512, | |
| output_dim=768, | |
| context_tokens=32, | |
| vae_scale=4, # vae timedownsample scale | |
| norm_input_visual=True, | |
| norm_output_audio=True): | |
| super().__init__() | |
| assert model_type == 'i2v', 'MultiTalk model requires your model_type is i2v.' | |
| self.model_type = model_type | |
| self.patch_size = patch_size | |
| self.text_len = text_len | |
| self.in_dim = in_dim | |
| self.dim = dim | |
| self.ffn_dim = ffn_dim | |
| self.freq_dim = freq_dim | |
| self.text_dim = text_dim | |
| self.out_dim = out_dim | |
| self.num_heads = num_heads | |
| self.num_layers = num_layers | |
| self.window_size = window_size | |
| self.qk_norm = qk_norm | |
| self.cross_attn_norm = cross_attn_norm | |
| self.eps = eps | |
| self.norm_output_audio = norm_output_audio | |
| self.audio_window = audio_window | |
| self.intermediate_dim = intermediate_dim | |
| self.vae_scale = vae_scale | |
| # embeddings | |
| self.patch_embedding = nn.Conv3d( | |
| in_dim, dim, kernel_size=patch_size, stride=patch_size) | |
| self.text_embedding = nn.Sequential( | |
| nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'), | |
| nn.Linear(dim, dim)) | |
| self.time_embedding = nn.Sequential( | |
| nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim)) | |
| self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6)) | |
| # blocks | |
| cross_attn_type = 'i2v_cross_attn' | |
| self.blocks = nn.ModuleList([ | |
| WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads, | |
| window_size, qk_norm, cross_attn_norm, eps, | |
| output_dim=output_dim, norm_input_visual=norm_input_visual) | |
| for _ in range(num_layers) | |
| ]) | |
| # head | |
| self.head = Head(dim, out_dim, patch_size, eps) | |
| assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0 | |
| d = dim // num_heads | |
| self.freqs = torch.cat([ | |
| rope_params(1024, d - 4 * (d // 6)), | |
| rope_params(1024, 2 * (d // 6)), | |
| rope_params(1024, 2 * (d // 6)) | |
| ], | |
| dim=1) | |
| if model_type == 'i2v': | |
| self.img_emb = MLPProj(1280, dim) | |
| else: | |
| raise NotImplementedError('Not supported model type.') | |
| # init audio adapter | |
| self.audio_proj = AudioProjModel( | |
| seq_len=audio_window, | |
| seq_len_vf=audio_window+vae_scale-1, | |
| intermediate_dim=intermediate_dim, | |
| output_dim=output_dim, | |
| context_tokens=context_tokens, | |
| norm_output_audio=norm_output_audio, | |
| ) | |
| # initialize weights | |
| self.init_weights() | |
| def teacache_init( | |
| self, | |
| use_ret_steps=True, | |
| teacache_thresh=0.2, | |
| sample_steps=40, | |
| model_scale='multitalk-480', | |
| ): | |
| print("teacache_init") | |
| self.enable_teacache = True | |
| self.__class__.cnt = 0 | |
| self.__class__.num_steps = sample_steps*3 | |
| self.__class__.teacache_thresh = teacache_thresh | |
| self.__class__.accumulated_rel_l1_distance_even = 0 | |
| self.__class__.accumulated_rel_l1_distance_odd = 0 | |
| self.__class__.previous_e0_even = None | |
| self.__class__.previous_e0_odd = None | |
| self.__class__.previous_residual_even = None | |
| self.__class__.previous_residual_odd = None | |
| self.__class__.use_ret_steps = use_ret_steps | |
| if use_ret_steps: | |
| if model_scale == 'multitalk-480': | |
| self.__class__.coefficients = [ 2.57151496e+05, -3.54229917e+04, 1.40286849e+03, -1.35890334e+01, 1.32517977e-01] | |
| if model_scale == 'multitalk-720': | |
| self.__class__.coefficients = [ 8.10705460e+03, 2.13393892e+03, -3.72934672e+02, 1.66203073e+01, -4.17769401e-02] | |
| self.__class__.ret_steps = 5*3 | |
| self.__class__.cutoff_steps = sample_steps*3 | |
| else: | |
| if model_scale == 'multitalk-480': | |
| self.__class__.coefficients = [-3.02331670e+02, 2.23948934e+02, -5.25463970e+01, 5.87348440e+00, -2.01973289e-01] | |
| if model_scale == 'multitalk-720': | |
| self.__class__.coefficients = [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683] | |
| self.__class__.ret_steps = 1*3 | |
| self.__class__.cutoff_steps = sample_steps*3 - 3 | |
| print("teacache_init done") | |
| def disable_teacache(self): | |
| self.enable_teacache = False | |
| def forward( | |
| self, | |
| x, | |
| t, | |
| context, | |
| seq_len, | |
| clip_fea=None, | |
| y=None, | |
| audio=None, | |
| ref_target_masks=None, | |
| ): | |
| assert clip_fea is not None and y is not None | |
| _, T, H, W = x[0].shape | |
| N_t = T // self.patch_size[0] | |
| N_h = H // self.patch_size[1] | |
| N_w = W // self.patch_size[2] | |
| if y is not None: | |
| x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] | |
| x[0] = x[0].to(context[0].dtype) | |
| # embeddings | |
| x = [self.patch_embedding(u.unsqueeze(0)) for u in x] | |
| grid_sizes = torch.stack( | |
| [torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) | |
| x = [u.flatten(2).transpose(1, 2) for u in x] | |
| seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long) | |
| assert seq_lens.max() <= seq_len | |
| x = torch.cat([ | |
| torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], | |
| dim=1) for u in x | |
| ]) | |
| # time embeddings | |
| with amp.autocast(dtype=torch.float32): | |
| e = self.time_embedding( | |
| sinusoidal_embedding_1d(self.freq_dim, t).float()) | |
| e0 = self.time_projection(e).unflatten(1, (6, self.dim)) | |
| assert e.dtype == torch.float32 and e0.dtype == torch.float32 | |
| # text embedding | |
| context_lens = None | |
| context = self.text_embedding( | |
| torch.stack([ | |
| torch.cat( | |
| [u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) | |
| for u in context | |
| ])) | |
| # clip embedding | |
| if clip_fea is not None: | |
| context_clip = self.img_emb(clip_fea) | |
| context = torch.concat([context_clip, context], dim=1).to(x.dtype) | |
| audio_cond = audio.to(device=x.device, dtype=x.dtype) | |
| first_frame_audio_emb_s = audio_cond[:, :1, ...] | |
| latter_frame_audio_emb = audio_cond[:, 1:, ...] | |
| latter_frame_audio_emb = rearrange(latter_frame_audio_emb, "b (n_t n) w s c -> b n_t n w s c", n=self.vae_scale) | |
| middle_index = self.audio_window // 2 | |
| latter_first_frame_audio_emb = latter_frame_audio_emb[:, :, :1, :middle_index+1, ...] | |
| latter_first_frame_audio_emb = rearrange(latter_first_frame_audio_emb, "b n_t n w s c -> b n_t (n w) s c") | |
| latter_last_frame_audio_emb = latter_frame_audio_emb[:, :, -1:, middle_index:, ...] | |
| latter_last_frame_audio_emb = rearrange(latter_last_frame_audio_emb, "b n_t n w s c -> b n_t (n w) s c") | |
| latter_middle_frame_audio_emb = latter_frame_audio_emb[:, :, 1:-1, middle_index:middle_index+1, ...] | |
| latter_middle_frame_audio_emb = rearrange(latter_middle_frame_audio_emb, "b n_t n w s c -> b n_t (n w) s c") | |
| latter_frame_audio_emb_s = torch.concat([latter_first_frame_audio_emb, latter_middle_frame_audio_emb, latter_last_frame_audio_emb], dim=2) | |
| audio_embedding = self.audio_proj(first_frame_audio_emb_s, latter_frame_audio_emb_s) | |
| human_num = len(audio_embedding) | |
| audio_embedding = torch.concat(audio_embedding.split(1), dim=2).to(x.dtype) | |
| # convert ref_target_masks to token_ref_target_masks | |
| if ref_target_masks is not None: | |
| ref_target_masks = ref_target_masks.unsqueeze(0).to(torch.float32) | |
| token_ref_target_masks = nn.functional.interpolate(ref_target_masks, size=(N_h, N_w), mode='nearest') | |
| token_ref_target_masks = token_ref_target_masks.squeeze(0) | |
| token_ref_target_masks = (token_ref_target_masks > 0) | |
| token_ref_target_masks = token_ref_target_masks.view(token_ref_target_masks.shape[0], -1) | |
| token_ref_target_masks = token_ref_target_masks.to(x.dtype) | |
| # teacache | |
| if self.enable_teacache: | |
| modulated_inp = e0 if self.use_ret_steps else e | |
| if self.cnt%3==0: # cond | |
| if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps: | |
| should_calc_cond = True | |
| self.accumulated_rel_l1_distance_cond = 0 | |
| else: | |
| rescale_func = np.poly1d(self.coefficients) | |
| self.accumulated_rel_l1_distance_cond += rescale_func(((modulated_inp-self.previous_e0_cond).abs().mean() / self.previous_e0_cond.abs().mean()).cpu().item()) | |
| if self.accumulated_rel_l1_distance_cond < self.teacache_thresh: | |
| should_calc_cond = False | |
| else: | |
| should_calc_cond = True | |
| self.accumulated_rel_l1_distance_cond = 0 | |
| self.previous_e0_cond = modulated_inp.clone() | |
| elif self.cnt%3==1: # drop_text | |
| if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps: | |
| should_calc_drop_text = True | |
| self.accumulated_rel_l1_distance_drop_text = 0 | |
| else: | |
| rescale_func = np.poly1d(self.coefficients) | |
| self.accumulated_rel_l1_distance_drop_text += rescale_func(((modulated_inp-self.previous_e0_drop_text).abs().mean() / self.previous_e0_drop_text.abs().mean()).cpu().item()) | |
| if self.accumulated_rel_l1_distance_drop_text < self.teacache_thresh: | |
| should_calc_drop_text = False | |
| else: | |
| should_calc_drop_text = True | |
| self.accumulated_rel_l1_distance_drop_text = 0 | |
| self.previous_e0_drop_text = modulated_inp.clone() | |
| else: # uncond | |
| if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps: | |
| should_calc_uncond = True | |
| self.accumulated_rel_l1_distance_uncond = 0 | |
| else: | |
| rescale_func = np.poly1d(self.coefficients) | |
| self.accumulated_rel_l1_distance_uncond += rescale_func(((modulated_inp-self.previous_e0_uncond).abs().mean() / self.previous_e0_uncond.abs().mean()).cpu().item()) | |
| if self.accumulated_rel_l1_distance_uncond < self.teacache_thresh: | |
| should_calc_uncond = False | |
| else: | |
| should_calc_uncond = True | |
| self.accumulated_rel_l1_distance_uncond = 0 | |
| self.previous_e0_uncond = modulated_inp.clone() | |
| # arguments | |
| kwargs = dict( | |
| e=e0, | |
| seq_lens=seq_lens, | |
| grid_sizes=grid_sizes, | |
| freqs=self.freqs, | |
| context=context, | |
| context_lens=context_lens, | |
| audio_embedding=audio_embedding, | |
| ref_target_masks=token_ref_target_masks, | |
| human_num=human_num, | |
| ) | |
| if self.enable_teacache: | |
| if self.cnt%3==0: | |
| if not should_calc_cond: | |
| x += self.previous_residual_cond | |
| else: | |
| ori_x = x.clone() | |
| for block in self.blocks: | |
| x = block(x, **kwargs) | |
| self.previous_residual_cond = x - ori_x | |
| elif self.cnt%3==1: | |
| if not should_calc_drop_text: | |
| x += self.previous_residual_drop_text | |
| else: | |
| ori_x = x.clone() | |
| for block in self.blocks: | |
| x = block(x, **kwargs) | |
| self.previous_residual_drop_text = x - ori_x | |
| else: | |
| if not should_calc_uncond: | |
| x += self.previous_residual_uncond | |
| else: | |
| ori_x = x.clone() | |
| for block in self.blocks: | |
| x = block(x, **kwargs) | |
| self.previous_residual_uncond = x - ori_x | |
| else: | |
| for block in self.blocks: | |
| x = block(x, **kwargs) | |
| # head | |
| x = self.head(x, e) | |
| # unpatchify | |
| x = self.unpatchify(x, grid_sizes) | |
| if self.enable_teacache: | |
| self.cnt += 1 | |
| if self.cnt >= self.num_steps: | |
| self.cnt = 0 | |
| return torch.stack(x).float() | |
| def unpatchify(self, x, grid_sizes): | |
| r""" | |
| Reconstruct video tensors from patch embeddings. | |
| Args: | |
| x (List[Tensor]): | |
| List of patchified features, each with shape [L, C_out * prod(patch_size)] | |
| grid_sizes (Tensor): | |
| Original spatial-temporal grid dimensions before patching, | |
| shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches) | |
| Returns: | |
| List[Tensor]: | |
| Reconstructed video tensors with shape [C_out, F, H / 8, W / 8] | |
| """ | |
| c = self.out_dim | |
| out = [] | |
| for u, v in zip(x, grid_sizes.tolist()): | |
| u = u[:math.prod(v)].view(*v, *self.patch_size, c) | |
| u = torch.einsum('fhwpqrc->cfphqwr', u) | |
| u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)]) | |
| out.append(u) | |
| return out | |
| def init_weights(self): | |
| r""" | |
| Initialize model parameters using Xavier initialization. | |
| """ | |
| # basic init | |
| for m in self.modules(): | |
| if isinstance(m, nn.Linear): | |
| nn.init.xavier_uniform_(m.weight) | |
| if m.bias is not None: | |
| nn.init.zeros_(m.bias) | |
| # init embeddings | |
| nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1)) | |
| for m in self.text_embedding.modules(): | |
| if isinstance(m, nn.Linear): | |
| nn.init.normal_(m.weight, std=.02) | |
| for m in self.time_embedding.modules(): | |
| if isinstance(m, nn.Linear): | |
| nn.init.normal_(m.weight, std=.02) | |
| # init output layer | |
| nn.init.zeros_(self.head.head.weight) |