Spaces:
Sleeping
Sleeping
import os, random, time | |
import uuid | |
import tempfile, shutil | |
from pydub import AudioSegment | |
import gradio as gr | |
from huggingface_hub import snapshot_download | |
# Download models | |
os.makedirs("checkpoints", exist_ok=True) | |
# List of subdirectories to create inside "checkpoints" | |
subfolders = [ | |
"vae", | |
"wav2vec2", | |
"emotion2vec_plus_large" | |
] | |
# Create each subdirectory | |
for subfolder in subfolders: | |
os.makedirs(os.path.join("checkpoints", subfolder), exist_ok=True) | |
snapshot_download( | |
repo_id = "memoavatar/memo", | |
local_dir = "./checkpoints" | |
) | |
snapshot_download( | |
repo_id = "stabilityai/sd-vae-ft-mse", | |
local_dir = "./checkpoints/vae" | |
) | |
snapshot_download( | |
repo_id = "facebook/wav2vec2-base-960h", | |
local_dir = "./checkpoints/wav2vec2" | |
) | |
snapshot_download( | |
repo_id = "emotion2vec/emotion2vec_plus_large", | |
local_dir = "./checkpoints/emotion2vec_plus_large" | |
) | |
import torch | |
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler | |
from tqdm import tqdm | |
from memo.models.audio_proj import AudioProjModel | |
from memo.models.image_proj import ImageProjModel | |
from memo.models.unet_2d_condition import UNet2DConditionModel | |
from memo.models.unet_3d import UNet3DConditionModel | |
from memo.pipelines.video_pipeline import VideoPipeline | |
from memo.utils.audio_utils import extract_audio_emotion_labels, preprocess_audio, resample_audio | |
from memo.utils.vision_utils import preprocess_image, tensor_to_video | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
weight_dtype = torch.bfloat16 | |
with torch.inference_mode(): | |
vae = AutoencoderKL.from_pretrained("./checkpoints/vae").to(device=device, dtype=weight_dtype) | |
reference_net = UNet2DConditionModel.from_pretrained("./checkpoints", subfolder="reference_net", use_safetensors=True) | |
diffusion_net = UNet3DConditionModel.from_pretrained("./checkpoints", subfolder="diffusion_net", use_safetensors=True) | |
image_proj = ImageProjModel.from_pretrained("./checkpoints", subfolder="image_proj", use_safetensors=True) | |
audio_proj = AudioProjModel.from_pretrained("./checkpoints", subfolder="audio_proj", use_safetensors=True) | |
vae.requires_grad_(False).eval() | |
reference_net.requires_grad_(False).eval() | |
diffusion_net.requires_grad_(False).eval() | |
image_proj.requires_grad_(False).eval() | |
audio_proj.requires_grad_(False).eval() | |
reference_net.enable_xformers_memory_efficient_attention() | |
diffusion_net.enable_xformers_memory_efficient_attention() | |
noise_scheduler = FlowMatchEulerDiscreteScheduler() | |
pipeline = VideoPipeline(vae=vae, reference_net=reference_net, diffusion_net=diffusion_net, scheduler=noise_scheduler, image_proj=image_proj) | |
pipeline.to(device=device, dtype=weight_dtype) | |
def process_audio(file_path, temp_dir): | |
# Load the audio file | |
audio = AudioSegment.from_file(file_path) | |
# Check and cut the audio if longer than 4 seconds | |
max_duration = 8 * 1000 # 4 seconds in milliseconds | |
if len(audio) > max_duration: | |
audio = audio[:max_duration] | |
# Save the processed audio in the temporary directory | |
output_path = os.path.join(temp_dir, "trimmed_audio.wav") | |
audio.export(output_path, format="wav") | |
# Return the path to the trimmed file | |
print(f"Processed audio saved at: {output_path}") | |
return output_path | |
def generate(input_video, input_audio, seed, progress=gr.Progress(track_tqdm=True)): | |
is_shared_ui = True if "fffiloni/MEMO" in os.environ['SPACE_ID'] else False | |
temp_dir = None | |
if is_shared_ui: | |
temp_dir = tempfile.mkdtemp() | |
input_audio = process_audio(input_audio, temp_dir) | |
print(f"Processed file was stored temporarily at: {input_audio}") | |
resolution = 512 | |
num_generated_frames_per_clip = 16 | |
fps = 30 | |
num_init_past_frames = 2 | |
num_past_frames = 16 | |
inference_steps = 20 | |
cfg_scale = 3.5 | |
if seed == 0: | |
random.seed(int(time.time())) | |
seed = random.randint(0, 18446744073709551615) | |
generator = torch.manual_seed(seed) | |
img_size = (resolution, resolution) | |
pixel_values, face_emb = preprocess_image(face_analysis_model="./checkpoints/misc/face_analysis", image_path=input_video, image_size=resolution) | |
output_dir = "./outputs" | |
os.makedirs(output_dir, exist_ok=True) | |
cache_dir = os.path.join(output_dir, "audio_preprocess") | |
os.makedirs(cache_dir, exist_ok=True) | |
input_audio = resample_audio(input_audio, os.path.join(cache_dir, f"{os.path.basename(input_audio).split('.')[0]}-16k.wav")) | |
if is_shared_ui: | |
# Clean up the temporary directory | |
if os.path.exists(temp_dir): | |
shutil.rmtree(temp_dir) | |
print(f"Temporary directory {temp_dir} deleted.") | |
audio_emb, audio_length = preprocess_audio( | |
wav_path=input_audio, | |
num_generated_frames_per_clip=num_generated_frames_per_clip, | |
fps=fps, | |
wav2vec_model="./checkpoints/wav2vec2", | |
vocal_separator_model="./checkpoints/misc/vocal_separator/Kim_Vocal_2.onnx", | |
cache_dir=cache_dir, | |
device=device, | |
) | |
audio_emotion, num_emotion_classes = extract_audio_emotion_labels( | |
model="./checkpoints", | |
wav_path=input_audio, | |
emotion2vec_model="./checkpoints/emotion2vec_plus_large", | |
audio_length=audio_length, | |
device=device, | |
) | |
video_frames = [] | |
num_clips = audio_emb.shape[0] // num_generated_frames_per_clip | |
for t in tqdm(range(num_clips), desc="Generating video clips"): | |
if len(video_frames) == 0: | |
past_frames = pixel_values.repeat(num_init_past_frames, 1, 1, 1) | |
past_frames = past_frames.to(dtype=pixel_values.dtype, device=pixel_values.device) | |
pixel_values_ref_img = torch.cat([pixel_values, past_frames], dim=0) | |
else: | |
past_frames = video_frames[-1][0] | |
past_frames = past_frames.permute(1, 0, 2, 3) | |
past_frames = past_frames[0 - num_past_frames :] | |
past_frames = past_frames * 2.0 - 1.0 | |
past_frames = past_frames.to(dtype=pixel_values.dtype, device=pixel_values.device) | |
pixel_values_ref_img = torch.cat([pixel_values, past_frames], dim=0) | |
pixel_values_ref_img = pixel_values_ref_img.unsqueeze(0) | |
audio_tensor = (audio_emb[t * num_generated_frames_per_clip : min((t + 1) * num_generated_frames_per_clip, audio_emb.shape[0])].unsqueeze(0).to(device=audio_proj.device, dtype=audio_proj.dtype)) | |
audio_tensor = audio_proj(audio_tensor) | |
audio_emotion_tensor = audio_emotion[t * num_generated_frames_per_clip : min((t + 1) * num_generated_frames_per_clip, audio_emb.shape[0])] | |
pipeline_output = pipeline( | |
ref_image=pixel_values_ref_img, | |
audio_tensor=audio_tensor, | |
audio_emotion=audio_emotion_tensor, | |
emotion_class_num=num_emotion_classes, | |
face_emb=face_emb, | |
width=img_size[0], | |
height=img_size[1], | |
video_length=num_generated_frames_per_clip, | |
num_inference_steps=inference_steps, | |
guidance_scale=cfg_scale, | |
generator=generator, | |
) | |
video_frames.append(pipeline_output.videos) | |
video_frames = torch.cat(video_frames, dim=2) | |
video_frames = video_frames.squeeze(0) | |
video_frames = video_frames[:, :audio_length] | |
# Save the output video | |
unique_id = str(uuid.uuid4()) | |
video_path = os.path.join(output_dir, f"memo-{seed}_{unique_id}.mp4") | |
tensor_to_video(video_frames, video_path, input_audio, fps=fps) | |
return video_path | |
with gr.Blocks(analytics_enabled=False) as demo: | |
with gr.Column(): | |
gr.Markdown("# MEMO: Memory-Guided Diffusion for Expressive Talking Video Generation") | |
gr.Markdown("Note: On fffiloni's shared UI, audio length is trimmed to max 8 seconds, so everyone can get a taste without to much waiting time in queue.") | |
gr.Markdown("Duplicate the space to skip the queue and enjoy full length capacity.") | |
gr.HTML(""" | |
<div style="display:flex;column-gap:4px;"> | |
<a href="https://github.com/memoavatar/memo"> | |
<img src='https://img.shields.io/badge/GitHub-Repo-blue'> | |
</a> | |
<a href="https://memoavatar.github.io/"> | |
<img src='https://img.shields.io/badge/Project-Page-green'> | |
</a> | |
<a href="https://arxiv.org/abs/2412.04448"> | |
<img src='https://img.shields.io/badge/ArXiv-Paper-red'> | |
</a> | |
<a href="https://huggingface.co/spaces/fffiloni/MEMO?duplicate=true"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space"> | |
</a> | |
<a href="https://huggingface.co/fffiloni"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF"> | |
</a> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
input_video = gr.Image(label="Upload Input Image", type="filepath") | |
input_audio = gr.Audio(label="Upload Input Audio", type="filepath") | |
seed = gr.Number(label="Seed (0 for Random)", value=0, precision=0) | |
with gr.Column(): | |
video_output = gr.Video(label="Generated Video") | |
generate_button = gr.Button("Generate") | |
generate_button.click( | |
fn=generate, | |
inputs=[input_video, input_audio, seed], | |
outputs=[video_output], | |
) | |
demo.queue().launch(share=False, show_api=False, show_error=True) |