|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import imageio.v3 as iio |
|
import cv2 |
|
import numpy as np |
|
import imageio |
|
|
|
import os |
|
import tyro |
|
import glob |
|
import imageio |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision.transforms.functional as TF |
|
from safetensors.torch import load_file |
|
import time |
|
|
|
import kiui |
|
from kiui.cam import orbit_camera |
|
|
|
from core.options import AllConfigs, Options |
|
from core.models import LGM |
|
from mvdream.pipeline_mvdream import MVDreamPipeline |
|
|
|
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) |
|
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) |
|
|
|
opt = tyro.cli(AllConfigs) |
|
|
|
|
|
model = LGM(opt) |
|
|
|
|
|
if opt.resume is not None: |
|
if opt.resume.endswith('safetensors'): |
|
ckpt = load_file(opt.resume, device='cpu') |
|
else: |
|
ckpt = torch.load(opt.resume, map_location='cpu') |
|
model.load_state_dict(ckpt, strict=False) |
|
print(f'[INFO] Loaded checkpoint from {opt.resume}') |
|
else: |
|
print(f'[WARN] model randomly initialized, are you sure?') |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
model = model.half().to(device) |
|
model.eval() |
|
|
|
bg_color = torch.tensor([255, 255, 255], dtype=torch.float32, device="cuda") / 255. |
|
|
|
rays_embeddings = model.prepare_default_rays(device) |
|
|
|
tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy)) |
|
proj_matrix = torch.zeros(4, 4, dtype=torch.float32, device=device) |
|
proj_matrix[0, 0] = 1 / tan_half_fov |
|
proj_matrix[1, 1] = 1 / tan_half_fov |
|
proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear) |
|
proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear) |
|
proj_matrix[2, 3] = 1 |
|
|
|
|
|
pipe = MVDreamPipeline.from_pretrained( |
|
"ashawkey/imagedream-ipmv-diffusers", |
|
torch_dtype=torch.float16, |
|
trust_remote_code=True, |
|
|
|
) |
|
pipe = pipe.to(device) |
|
|
|
|
|
def process_eval_video(video_path, T): |
|
frames = iio.imread(video_path) |
|
frames = [frames[x] for x in range(frames.shape[0])] |
|
V = opt.num_input_views |
|
img_TV = [] |
|
for t in range(T): |
|
|
|
img = frames[t] |
|
|
|
img = cv2.resize(img, (256, 256), interpolation=cv2.INTER_AREA) |
|
img = img.astype(np.float32) / 255.0 |
|
|
|
img_V = [] |
|
for v in range(V): |
|
img_V.append(img) |
|
img_TV.append(np.stack(img_V, axis=0)) |
|
|
|
return np.stack(img_TV, axis=0) |
|
|
|
|
|
|
|
def process(opt: Options, path): |
|
name = os.path.splitext(os.path.basename(path))[0] |
|
print(f'[INFO] Processing {path} --> {name}') |
|
os.makedirs(opt.workspace, exist_ok=True) |
|
|
|
ref_video = process_eval_video(path, opt.num_frames) |
|
|
|
|
|
end_time = time.time() |
|
|
|
cv2.imwrite(os.path.join(opt.workspace, f'{name}_orig.png'), ref_video[0,0][..., ::-1] * 255) |
|
|
|
mv_image = pipe('', ref_video[0,0], guidance_scale=5, num_inference_steps=30, elevation=0) |
|
for v in range(4): |
|
cv2.imwrite(os.path.join(opt.workspace, f'{name}_mv_{(v-1)%4:03d}.png'), mv_image[v][..., ::-1] * 255) |
|
mv_image = np.stack([mv_image[1], mv_image[2], mv_image[3], mv_image[0]], axis=0) |
|
|
|
|
|
|
|
input_image = torch.from_numpy(mv_image).permute(0, 3, 1, 2).float().to(device) |
|
input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False) |
|
input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) |
|
|
|
input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) |
|
|
|
with torch.no_grad(): |
|
with torch.autocast(device_type='cuda', dtype=torch.float16): |
|
gaussians_all_frame = model.forward_gaussians(input_image) |
|
|
|
B, T, V = 1, gaussians_all_frame.shape[0]//opt.batch_size, opt.num_views |
|
gaussians_all_frame = gaussians_all_frame.reshape(B, T, *gaussians_all_frame.shape[1:]) |
|
|
|
|
|
best_azi = 0 |
|
best_diff = 1e8 |
|
for v, azi in enumerate(np.arange(-180, 180, 1)): |
|
gaussians = gaussians_all_frame[:, 0] |
|
|
|
cam_poses = torch.from_numpy(orbit_camera(0, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device) |
|
|
|
cam_poses[:, :3, 1:3] *= -1 |
|
|
|
|
|
cam_view = torch.inverse(cam_poses).transpose(1, 2) |
|
cam_view_proj = cam_view @ proj_matrix |
|
cam_pos = - cam_poses[:, :3, 3] |
|
|
|
result = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), bg_color=bg_color) |
|
image = result['image'] |
|
alpha = result['alpha'] |
|
|
|
image = image.squeeze(1).permute(0,2,3,1).squeeze(0).contiguous().float().cpu().numpy() |
|
image = cv2.resize(image, (256, 256), interpolation=cv2.INTER_AREA) |
|
|
|
diff = np.mean((image- ref_video[0,0]) ** 2) |
|
|
|
if diff < best_diff: |
|
best_diff = diff |
|
best_azi = azi |
|
|
|
print("Best aligned azimuth: ", best_azi) |
|
|
|
mv_image = [] |
|
for v, azi in enumerate(np.arange(0, 360, 90)): |
|
gaussians = gaussians_all_frame[:, 0] |
|
|
|
cam_poses = torch.from_numpy(orbit_camera(0, azi + best_azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device) |
|
|
|
cam_poses[:, :3, 1:3] *= -1 |
|
|
|
|
|
cam_view = torch.inverse(cam_poses).transpose(1, 2) |
|
cam_view_proj = cam_view @ proj_matrix |
|
cam_pos = - cam_poses[:, :3, 3] |
|
|
|
scale = 1 |
|
|
|
result = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), bg_color=bg_color) |
|
image = result['image'] |
|
alpha = result['alpha'] |
|
|
|
imageio.imwrite(os.path.join(opt.workspace, f'{name}_{v:03d}.png'), (image.squeeze(1).permute(0,2,3,1).squeeze(0).contiguous().float().cpu().numpy() * 255).astype(np.uint8)) |
|
|
|
if azi in [0, 90, 180, 270]: |
|
rendered_image = image.squeeze(1) |
|
rendered_image = F.interpolate(rendered_image, (256, 256)) |
|
rendered_image = rendered_image.permute(0,2,3,1).contiguous().float().cpu().numpy() |
|
mv_image.append(rendered_image) |
|
mv_image = np.concatenate(mv_image, axis=0) |
|
print(f"Generate 3D takes {time.time()-end_time} s") |
|
|
|
images = [] |
|
azimuth = np.arange(0, 360, 4, dtype=np.int32) |
|
elevation = 0 |
|
for azi in azimuth: |
|
gaussians = gaussians_all_frame[:, 0] |
|
|
|
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device) |
|
|
|
cam_poses[:, :3, 1:3] *= -1 |
|
|
|
|
|
cam_view = torch.inverse(cam_poses).transpose(1, 2) |
|
cam_view_proj = cam_view @ proj_matrix |
|
cam_pos = - cam_poses[:, :3, 3] |
|
|
|
scale = 1 |
|
|
|
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), bg_color=bg_color)['image'] |
|
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8)) |
|
|
|
images = np.concatenate(images, axis=0) |
|
imageio.mimwrite(os.path.join(opt.workspace, f'{name}.mp4'), images, fps=30) |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
|
|
assert opt.test_path is not None |
|
if os.path.isdir(opt.test_path): |
|
file_paths = glob.glob(os.path.join(opt.test_path, "*")) |
|
else: |
|
file_paths = [opt.test_path] |
|
|
|
for path in sorted(file_paths): |
|
process(opt, path) |
|
|