Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2024 The LCM team and the HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| import argparse | |
| import copy | |
| import functools | |
| import gc | |
| import logging | |
| import pyrallis | |
| import math | |
| import os | |
| import random | |
| import shutil | |
| from contextlib import nullcontext | |
| from pathlib import Path | |
| import accelerate | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint | |
| import transformers | |
| from PIL import Image | |
| from accelerate import Accelerator | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import ProjectConfiguration, set_seed | |
| from datasets import load_dataset | |
| from huggingface_hub import create_repo, upload_folder | |
| from packaging import version | |
| from collections import namedtuple | |
| from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict | |
| from torchvision import transforms | |
| from torchvision.transforms.functional import crop | |
| from tqdm.auto import tqdm | |
| from transformers import ( | |
| AutoTokenizer, | |
| PretrainedConfig, | |
| CLIPImageProcessor, CLIPVisionModelWithProjection, | |
| AutoImageProcessor, AutoModel | |
| ) | |
| import diffusers | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DDPMScheduler, | |
| LCMScheduler, | |
| StableDiffusionXLPipeline, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.training_utils import cast_training_params, resolve_interpolation_mode | |
| from diffusers.utils import ( | |
| check_min_version, | |
| convert_state_dict_to_diffusers, | |
| convert_unet_state_dict_to_peft, | |
| is_wandb_available, | |
| ) | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.utils.torch_utils import is_compiled_module | |
| from basicsr.utils.degradation_pipeline import RealESRGANDegradation | |
| from utils.train_utils import ( | |
| seperate_ip_params_from_unet, | |
| import_model_class_from_model_name_or_path, | |
| tensor_to_pil, | |
| get_train_dataset, prepare_train_dataset, collate_fn, | |
| encode_prompt, importance_sampling_fn, extract_into_tensor | |
| ) | |
| from data.data_config import DataConfig | |
| from losses.loss_config import LossesConfig | |
| from losses.losses import * | |
| from module.ip_adapter.resampler import Resampler | |
| from module.ip_adapter.utils import init_adapter_in_unet, prepare_training_image_embeds | |
| if is_wandb_available(): | |
| import wandb | |
| # Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
| logger = get_logger(__name__) | |
| def prepare_latents(lq, vae, scheduler, generator, timestep): | |
| transform = transforms.Compose([ | |
| transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), | |
| transforms.CenterCrop(args.resolution), | |
| transforms.ToTensor(), | |
| ]) | |
| lq_pt = [transform(lq_pil.convert("RGB")) for lq_pil in lq] | |
| img_pt = torch.stack(lq_pt).to(vae.device, dtype=vae.dtype) | |
| img_pt = img_pt * 2.0 - 1.0 | |
| with torch.no_grad(): | |
| latents = vae.encode(img_pt).latent_dist.sample() | |
| latents = latents * vae.config.scaling_factor | |
| noise = torch.randn(latents.shape, generator=generator, device=vae.device, dtype=vae.dtype, layout=torch.strided).to(vae.device) | |
| bsz = latents.shape[0] | |
| print(f"init latent at {timestep}") | |
| timestep = torch.tensor([timestep]*bsz, device=vae.device, dtype=torch.int64) | |
| latents = scheduler.add_noise(latents, noise, timestep) | |
| return latents | |
| def log_validation(unet, vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2, | |
| scheduler, image_encoder, image_processor, | |
| args, accelerator, weight_dtype, step, lq_img=None, gt_img=None, is_final_validation=False, log_local=False): | |
| logger.info("Running validation... ") | |
| image_logs = [] | |
| lq = [Image.open(lq_example) for lq_example in args.validation_image] | |
| pipe = StableDiffusionXLPipeline( | |
| vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2, | |
| unet, scheduler, image_encoder, image_processor, | |
| ).to(accelerator.device) | |
| timesteps = [args.num_train_timesteps - 1] | |
| generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) | |
| latents = prepare_latents(lq, vae, scheduler, generator, timesteps[-1]) | |
| image = pipe( | |
| prompt=[""]*len(lq), | |
| ip_adapter_image=[lq], | |
| num_inference_steps=1, | |
| timesteps=timesteps, | |
| generator=generator, | |
| guidance_scale=1.0, | |
| height=args.resolution, | |
| width=args.resolution, | |
| latents=latents, | |
| ).images | |
| if log_local: | |
| # for i, img in enumerate(tensor_to_pil(lq_img)): | |
| # img.save(f"./lq_{i}.png") | |
| # for i, img in enumerate(tensor_to_pil(gt_img)): | |
| # img.save(f"./gt_{i}.png") | |
| for i, img in enumerate(image): | |
| img.save(f"./lq_IPA_{i}.png") | |
| return | |
| tracker_key = "test" if is_final_validation else "validation" | |
| for tracker in accelerator.trackers: | |
| if tracker.name == "tensorboard": | |
| images = [np.asarray(pil_img) for pil_img in image] | |
| images = np.stack(images, axis=0) | |
| if lq_img is not None and gt_img is not None: | |
| input_lq = lq_img.detach().cpu() | |
| input_lq = np.asarray(input_lq.add(1).div(2).clamp(0, 1)) | |
| input_gt = gt_img.detach().cpu() | |
| input_gt = np.asarray(input_gt.add(1).div(2).clamp(0, 1)) | |
| tracker.writer.add_images("lq", input_lq, step, dataformats="NCHW") | |
| tracker.writer.add_images("gt", input_gt, step, dataformats="NCHW") | |
| tracker.writer.add_images("rec", images, step, dataformats="NHWC") | |
| elif tracker.name == "wandb": | |
| raise NotImplementedError("Wandb logging not implemented for validation.") | |
| formatted_images = [] | |
| for log in image_logs: | |
| images = log["images"] | |
| validation_prompt = log["validation_prompt"] | |
| validation_image = log["validation_image"] | |
| formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning")) | |
| for image in images: | |
| image = wandb.Image(image, caption=validation_prompt) | |
| formatted_images.append(image) | |
| tracker.log({tracker_key: formatted_images}) | |
| else: | |
| logger.warning(f"image logging not implemented for {tracker.name}") | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| return image_logs | |
| class DDIMSolver: | |
| def __init__(self, alpha_cumprods, timesteps=1000, ddim_timesteps=50): | |
| # DDIM sampling parameters | |
| step_ratio = timesteps // ddim_timesteps | |
| self.ddim_timesteps = (np.arange(1, ddim_timesteps + 1) * step_ratio).round().astype(np.int64) - 1 | |
| self.ddim_alpha_cumprods = alpha_cumprods[self.ddim_timesteps] | |
| self.ddim_alpha_cumprods_prev = np.asarray( | |
| [alpha_cumprods[0]] + alpha_cumprods[self.ddim_timesteps[:-1]].tolist() | |
| ) | |
| # convert to torch tensors | |
| self.ddim_timesteps = torch.from_numpy(self.ddim_timesteps).long() | |
| self.ddim_alpha_cumprods = torch.from_numpy(self.ddim_alpha_cumprods) | |
| self.ddim_alpha_cumprods_prev = torch.from_numpy(self.ddim_alpha_cumprods_prev) | |
| def to(self, device): | |
| self.ddim_timesteps = self.ddim_timesteps.to(device) | |
| self.ddim_alpha_cumprods = self.ddim_alpha_cumprods.to(device) | |
| self.ddim_alpha_cumprods_prev = self.ddim_alpha_cumprods_prev.to(device) | |
| return self | |
| def ddim_step(self, pred_x0, pred_noise, timestep_index): | |
| alpha_cumprod_prev = extract_into_tensor(self.ddim_alpha_cumprods_prev, timestep_index, pred_x0.shape) | |
| dir_xt = (1.0 - alpha_cumprod_prev).sqrt() * pred_noise | |
| x_prev = alpha_cumprod_prev.sqrt() * pred_x0 + dir_xt | |
| return x_prev | |
| def append_dims(x, target_dims): | |
| """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" | |
| dims_to_append = target_dims - x.ndim | |
| if dims_to_append < 0: | |
| raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less") | |
| return x[(...,) + (None,) * dims_to_append] | |
| # From LCMScheduler.get_scalings_for_boundary_condition_discrete | |
| def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0): | |
| scaled_timestep = timestep_scaling * timestep | |
| c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2) | |
| c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5 | |
| return c_skip, c_out | |
| # Compare LCMScheduler.step, Step 4 | |
| def get_predicted_original_sample(model_output, timesteps, sample, prediction_type, alphas, sigmas): | |
| alphas = extract_into_tensor(alphas, timesteps, sample.shape) | |
| sigmas = extract_into_tensor(sigmas, timesteps, sample.shape) | |
| if prediction_type == "epsilon": | |
| pred_x_0 = (sample - sigmas * model_output) / alphas | |
| elif prediction_type == "sample": | |
| pred_x_0 = model_output | |
| elif prediction_type == "v_prediction": | |
| pred_x_0 = alphas * sample - sigmas * model_output | |
| else: | |
| raise ValueError( | |
| f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`" | |
| f" are supported." | |
| ) | |
| return pred_x_0 | |
| # Based on step 4 in DDIMScheduler.step | |
| def get_predicted_noise(model_output, timesteps, sample, prediction_type, alphas, sigmas): | |
| alphas = extract_into_tensor(alphas, timesteps, sample.shape) | |
| sigmas = extract_into_tensor(sigmas, timesteps, sample.shape) | |
| if prediction_type == "epsilon": | |
| pred_epsilon = model_output | |
| elif prediction_type == "sample": | |
| pred_epsilon = (sample - alphas * model_output) / sigmas | |
| elif prediction_type == "v_prediction": | |
| pred_epsilon = alphas * model_output + sigmas * sample | |
| else: | |
| raise ValueError( | |
| f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`" | |
| f" are supported." | |
| ) | |
| return pred_epsilon | |
| def extract_into_tensor(a, t, x_shape): | |
| b, *_ = t.shape | |
| out = a.gather(-1, t) | |
| return out.reshape(b, *((1,) * (len(x_shape) - 1))) | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
| # ----------Model Checkpoint Loading Arguments---------- | |
| parser.add_argument( | |
| "--pretrained_model_name_or_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="Path to pretrained LDM teacher model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--pretrained_vae_model_name_or_path", | |
| type=str, | |
| default=None, | |
| help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.", | |
| ) | |
| parser.add_argument( | |
| "--teacher_revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="Revision of pretrained LDM teacher model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="Revision of pretrained LDM model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--pretrained_lcm_lora_path", | |
| type=str, | |
| default=None, | |
| help="Path to LCM lora or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--feature_extractor_path", | |
| type=str, | |
| default=None, | |
| help="Path to image encoder for IP-Adapters or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--pretrained_adapter_model_path", | |
| type=str, | |
| default=None, | |
| help="Path to IP-Adapter models or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--adapter_tokens", | |
| type=int, | |
| default=64, | |
| help="Number of tokens to use in IP-adapter cross attention mechanism.", | |
| ) | |
| parser.add_argument( | |
| "--use_clip_encoder", | |
| action="store_true", | |
| help="Whether or not to use DINO as image encoder, else CLIP encoder.", | |
| ) | |
| parser.add_argument( | |
| "--image_encoder_hidden_feature", | |
| action="store_true", | |
| help="Whether or not to use the penultimate hidden states as image embeddings.", | |
| ) | |
| # ----------Training Arguments---------- | |
| # ----General Training Arguments---- | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="lcm-xl-distilled", | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument( | |
| "--cache_dir", | |
| type=str, | |
| default=None, | |
| help="The directory where the downloaded models and datasets will be stored.", | |
| ) | |
| parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") | |
| # ----Logging---- | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help=( | |
| "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
| " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--report_to", | |
| type=str, | |
| default="tensorboard", | |
| help=( | |
| 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
| ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
| ), | |
| ) | |
| # ----Checkpointing---- | |
| parser.add_argument( | |
| "--checkpointing_steps", | |
| type=int, | |
| default=4000, | |
| help=( | |
| "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" | |
| " training using `--resume_from_checkpoint`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--checkpoints_total_limit", | |
| type=int, | |
| default=5, | |
| help=("Max number of checkpoints to store."), | |
| ) | |
| parser.add_argument( | |
| "--resume_from_checkpoint", | |
| type=str, | |
| default=None, | |
| help=( | |
| "Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
| ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--save_only_adapter", | |
| action="store_true", | |
| help="Only save extra adapter to save space.", | |
| ) | |
| # ----Image Processing---- | |
| parser.add_argument( | |
| "--data_config_path", | |
| type=str, | |
| default=None, | |
| help=("A folder containing the training data. "), | |
| ) | |
| parser.add_argument( | |
| "--train_data_dir", | |
| type=str, | |
| default=None, | |
| help=( | |
| "A folder containing the training data. Folder contents must follow the structure described in" | |
| " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" | |
| " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--image_column", type=str, default="image", help="The column of the dataset containing an image." | |
| ) | |
| parser.add_argument( | |
| "--conditioning_image_column", | |
| type=str, | |
| default="conditioning_image", | |
| help="The column of the dataset containing the controlnet conditioning image.", | |
| ) | |
| parser.add_argument( | |
| "--caption_column", | |
| type=str, | |
| default="text", | |
| help="The column of the dataset containing a caption or a list of captions.", | |
| ) | |
| parser.add_argument( | |
| "--text_drop_rate", | |
| type=float, | |
| default=0, | |
| help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", | |
| ) | |
| parser.add_argument( | |
| "--image_drop_rate", | |
| type=float, | |
| default=0, | |
| help="Proportion of IP-Adapter inputs to be dropped. Defaults to 0 (no drop-out).", | |
| ) | |
| parser.add_argument( | |
| "--cond_drop_rate", | |
| type=float, | |
| default=0, | |
| help="Proportion of all conditions to be dropped. Defaults to 0 (no drop-out).", | |
| ) | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=1024, | |
| help=( | |
| "The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
| " resolution" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--interpolation_type", | |
| type=str, | |
| default="bilinear", | |
| help=( | |
| "The interpolation function used when resizing images to the desired resolution. Choose between `bilinear`," | |
| " `bicubic`, `box`, `nearest`, `nearest_exact`, `hamming`, and `lanczos`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--center_crop", | |
| default=False, | |
| action="store_true", | |
| help=( | |
| "Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
| " cropped. The images will be resized to the resolution first before cropping." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--random_flip", | |
| action="store_true", | |
| help="whether to randomly flip images horizontally", | |
| ) | |
| parser.add_argument( | |
| "--encode_batch_size", | |
| type=int, | |
| default=8, | |
| help="Batch size to use for VAE encoding of the images for efficient processing.", | |
| ) | |
| # ----Dataloader---- | |
| parser.add_argument( | |
| "--dataloader_num_workers", | |
| type=int, | |
| default=0, | |
| help=( | |
| "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
| ), | |
| ) | |
| # ----Batch Size and Training Steps---- | |
| parser.add_argument( | |
| "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument("--num_train_epochs", type=int, default=100) | |
| parser.add_argument( | |
| "--max_train_steps", | |
| type=int, | |
| default=None, | |
| help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
| ) | |
| parser.add_argument( | |
| "--max_train_samples", | |
| type=int, | |
| default=None, | |
| help=( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ), | |
| ) | |
| # ----Learning Rate---- | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=1e-6, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--scale_lr", | |
| action="store_true", | |
| default=False, | |
| help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
| ) | |
| parser.add_argument( | |
| "--lr_scheduler", | |
| type=str, | |
| default="constant", | |
| help=( | |
| 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
| ' "constant", "constant_with_warmup"]' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
| ) | |
| parser.add_argument( | |
| "--lr_num_cycles", | |
| type=int, | |
| default=1, | |
| help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
| ) | |
| parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| # ----Optimizer (Adam)---- | |
| parser.add_argument( | |
| "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
| ) | |
| parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
| parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| # ----Diffusion Training Arguments---- | |
| # ----Latent Consistency Distillation (LCD) Specific Arguments---- | |
| parser.add_argument( | |
| "--w_min", | |
| type=float, | |
| default=3.0, | |
| required=False, | |
| help=( | |
| "The minimum guidance scale value for guidance scale sampling. Note that we are using the Imagen CFG" | |
| " formulation rather than the LCM formulation, which means all guidance scales have 1 added to them as" | |
| " compared to the original paper." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--w_max", | |
| type=float, | |
| default=15.0, | |
| required=False, | |
| help=( | |
| "The maximum guidance scale value for guidance scale sampling. Note that we are using the Imagen CFG" | |
| " formulation rather than the LCM formulation, which means all guidance scales have 1 added to them as" | |
| " compared to the original paper." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--num_train_timesteps", | |
| type=int, | |
| default=1000, | |
| help="The number of timesteps to use for DDIM sampling.", | |
| ) | |
| parser.add_argument( | |
| "--num_ddim_timesteps", | |
| type=int, | |
| default=50, | |
| help="The number of timesteps to use for DDIM sampling.", | |
| ) | |
| parser.add_argument( | |
| "--losses_config_path", | |
| type=str, | |
| default='config_files/losses.yaml', | |
| required=True, | |
| help=("A yaml file containing losses to use and their weights."), | |
| ) | |
| parser.add_argument( | |
| "--loss_type", | |
| type=str, | |
| default="l2", | |
| choices=["l2", "huber"], | |
| help="The type of loss to use for the LCD loss.", | |
| ) | |
| parser.add_argument( | |
| "--huber_c", | |
| type=float, | |
| default=0.001, | |
| help="The huber loss parameter. Only used if `--loss_type=huber`.", | |
| ) | |
| parser.add_argument( | |
| "--lora_rank", | |
| type=int, | |
| default=64, | |
| help="The rank of the LoRA projection matrix.", | |
| ) | |
| parser.add_argument( | |
| "--lora_alpha", | |
| type=int, | |
| default=64, | |
| help=( | |
| "The value of the LoRA alpha parameter, which controls the scaling factor in front of the LoRA weight" | |
| " update delta_W. No scaling will be performed if this value is equal to `lora_rank`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--lora_dropout", | |
| type=float, | |
| default=0.0, | |
| help="The dropout probability for the dropout layer added before applying the LoRA to each layer input.", | |
| ) | |
| parser.add_argument( | |
| "--lora_target_modules", | |
| type=str, | |
| default=None, | |
| help=( | |
| "A comma-separated string of target module keys to add LoRA to. If not set, a default list of modules will" | |
| " be used. By default, LoRA will be applied to all conv and linear layers." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--vae_encode_batch_size", | |
| type=int, | |
| default=8, | |
| required=False, | |
| help=( | |
| "The batch size used when encoding (and decoding) images to latents (and vice versa) using the VAE." | |
| " Encoding or decoding the whole batch at once may run into OOM issues." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--timestep_scaling_factor", | |
| type=float, | |
| default=10.0, | |
| help=( | |
| "The multiplicative timestep scaling factor used when calculating the boundary scalings for LCM. The" | |
| " higher the scaling is, the lower the approximation error, but the default value of 10.0 should typically" | |
| " suffice." | |
| ), | |
| ) | |
| # ----Mixed Precision---- | |
| parser.add_argument( | |
| "--mixed_precision", | |
| type=str, | |
| default=None, | |
| choices=["no", "fp16", "bf16"], | |
| help=( | |
| "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
| " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
| " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--allow_tf32", | |
| action="store_true", | |
| help=( | |
| "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
| " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
| ), | |
| ) | |
| # ----Training Optimizations---- | |
| parser.add_argument( | |
| "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
| ) | |
| parser.add_argument( | |
| "--gradient_checkpointing", | |
| action="store_true", | |
| help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
| ) | |
| # ----Distributed Training---- | |
| parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
| # ----------Validation Arguments---------- | |
| parser.add_argument( | |
| "--validation_steps", | |
| type=int, | |
| default=3000, | |
| help="Run validation every X steps.", | |
| ) | |
| parser.add_argument( | |
| "--validation_image", | |
| type=str, | |
| default=None, | |
| nargs="+", | |
| help=( | |
| "A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`" | |
| " and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a" | |
| " a single `--validation_prompt` to be used with all `--validation_image`s, or a single" | |
| " `--validation_image` that will be used with all `--validation_prompt`s." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--validation_prompt", | |
| type=str, | |
| default=None, | |
| nargs="+", | |
| help=( | |
| "A set of prompts evaluated every `--validation_steps` and logged to `--report_to`." | |
| " Provide either a matching number of `--validation_image`s, a single `--validation_image`" | |
| " to be used with all prompts, or a single prompt that will be used with all `--validation_image`s." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--sanity_check", | |
| action="store_true", | |
| help=( | |
| "sanity check" | |
| ), | |
| ) | |
| # ----------Huggingface Hub Arguments----------- | |
| parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
| parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
| parser.add_argument( | |
| "--hub_model_id", | |
| type=str, | |
| default=None, | |
| help="The name of the repository to keep in sync with the local `output_dir`.", | |
| ) | |
| # ----------Accelerate Arguments---------- | |
| parser.add_argument( | |
| "--tracker_project_name", | |
| type=str, | |
| default="trian", | |
| help=( | |
| "The `project_name` argument passed to Accelerator.init_trackers for" | |
| " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" | |
| ), | |
| ) | |
| args = parser.parse_args() | |
| env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
| if env_local_rank != -1 and env_local_rank != args.local_rank: | |
| args.local_rank = env_local_rank | |
| return args | |
| def main(args): | |
| if args.report_to == "wandb" and args.hub_token is not None: | |
| raise ValueError( | |
| "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." | |
| " Please use `huggingface-cli login` to authenticate with the Hub." | |
| ) | |
| logging_dir = Path(args.output_dir, args.logging_dir) | |
| accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
| accelerator = Accelerator( | |
| gradient_accumulation_steps=args.gradient_accumulation_steps, | |
| mixed_precision=args.mixed_precision, | |
| log_with=args.report_to, | |
| project_config=accelerator_project_config, | |
| ) | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| logger.info(accelerator.state, main_process_only=False) | |
| if accelerator.is_local_main_process: | |
| transformers.utils.logging.set_verbosity_warning() | |
| diffusers.utils.logging.set_verbosity_info() | |
| else: | |
| transformers.utils.logging.set_verbosity_error() | |
| diffusers.utils.logging.set_verbosity_error() | |
| # If passed along, set the training seed now. | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| # Handle the repository creation. | |
| if accelerator.is_main_process: | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| # 1. Create the noise scheduler and the desired noise schedule. | |
| noise_scheduler = DDPMScheduler.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="scheduler", revision=args.teacher_revision | |
| ) | |
| noise_scheduler.config.num_train_timesteps = args.num_train_timesteps | |
| lcm_scheduler = LCMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
| # DDPMScheduler calculates the alpha and sigma noise schedules (based on the alpha bars) for us | |
| alpha_schedule = torch.sqrt(noise_scheduler.alphas_cumprod) | |
| sigma_schedule = torch.sqrt(1 - noise_scheduler.alphas_cumprod) | |
| # Initialize the DDIM ODE solver for distillation. | |
| solver = DDIMSolver( | |
| noise_scheduler.alphas_cumprod.numpy(), | |
| timesteps=noise_scheduler.config.num_train_timesteps, | |
| ddim_timesteps=args.num_ddim_timesteps, | |
| ) | |
| # 2. Load tokenizers from SDXL checkpoint. | |
| tokenizer_one = AutoTokenizer.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.teacher_revision, use_fast=False | |
| ) | |
| tokenizer_two = AutoTokenizer.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=args.teacher_revision, use_fast=False | |
| ) | |
| # 3. Load text encoders from SDXL checkpoint. | |
| # import correct text encoder classes | |
| text_encoder_cls_one = import_model_class_from_model_name_or_path( | |
| args.pretrained_model_name_or_path, args.teacher_revision | |
| ) | |
| text_encoder_cls_two = import_model_class_from_model_name_or_path( | |
| args.pretrained_model_name_or_path, args.teacher_revision, subfolder="text_encoder_2" | |
| ) | |
| text_encoder_one = text_encoder_cls_one.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.teacher_revision | |
| ) | |
| text_encoder_two = text_encoder_cls_two.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.teacher_revision | |
| ) | |
| if args.use_clip_encoder: | |
| image_processor = CLIPImageProcessor() | |
| image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.feature_extractor_path) | |
| else: | |
| image_processor = AutoImageProcessor.from_pretrained(args.feature_extractor_path) | |
| image_encoder = AutoModel.from_pretrained(args.feature_extractor_path) | |
| # 4. Load VAE from SDXL checkpoint (or more stable VAE) | |
| vae_path = ( | |
| args.pretrained_model_name_or_path | |
| if args.pretrained_vae_model_name_or_path is None | |
| else args.pretrained_vae_model_name_or_path | |
| ) | |
| vae = AutoencoderKL.from_pretrained( | |
| vae_path, | |
| subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, | |
| revision=args.teacher_revision, | |
| ) | |
| # 7. Create online student U-Net. | |
| unet = UNet2DConditionModel.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="unet", revision=args.teacher_revision | |
| ) | |
| # Resampler for project model in IP-Adapter | |
| image_proj_model = Resampler( | |
| dim=1280, | |
| depth=4, | |
| dim_head=64, | |
| heads=20, | |
| num_queries=args.adapter_tokens, | |
| embedding_dim=image_encoder.config.hidden_size, | |
| output_dim=unet.config.cross_attention_dim, | |
| ff_mult=4 | |
| ) | |
| # Load the same adapter in both unet. | |
| init_adapter_in_unet( | |
| unet, | |
| image_proj_model, | |
| os.path.join(args.pretrained_adapter_model_path, 'adapter_ckpt.pt'), | |
| adapter_tokens=args.adapter_tokens, | |
| ) | |
| # Check that all trainable models are in full precision | |
| low_precision_error_string = ( | |
| " Please make sure to always have all model weights in full float32 precision when starting training - even if" | |
| " doing mixed precision training, copy of the weights should still be float32." | |
| ) | |
| def unwrap_model(model): | |
| model = accelerator.unwrap_model(model) | |
| model = model._orig_mod if is_compiled_module(model) else model | |
| return model | |
| if unwrap_model(unet).dtype != torch.float32: | |
| raise ValueError( | |
| f"Controlnet loaded as datatype {unwrap_model(unet).dtype}. {low_precision_error_string}" | |
| ) | |
| if args.pretrained_lcm_lora_path is not None: | |
| lora_state_dict, alpha_dict = StableDiffusionXLPipeline.lora_state_dict(args.pretrained_lcm_lora_path) | |
| unet_state_dict = { | |
| f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.") | |
| } | |
| unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict) | |
| lora_state_dict = dict() | |
| for k, v in unet_state_dict.items(): | |
| if "ip" in k: | |
| k = k.replace("attn2", "attn2.processor") | |
| lora_state_dict[k] = v | |
| else: | |
| lora_state_dict[k] = v | |
| if alpha_dict: | |
| args.lora_alpha = next(iter(alpha_dict.values())) | |
| else: | |
| args.lora_alpha = 1 | |
| # 9. Add LoRA to the student U-Net, only the LoRA projection matrix will be updated by the optimizer. | |
| if args.lora_target_modules is not None: | |
| lora_target_modules = [module_key.strip() for module_key in args.lora_target_modules.split(",")] | |
| else: | |
| lora_target_modules = [ | |
| "to_q", | |
| "to_kv", | |
| "0.to_out", | |
| "attn1.to_k", | |
| "attn1.to_v", | |
| "to_k_ip", | |
| "to_v_ip", | |
| "ln_k_ip.linear", | |
| "ln_v_ip.linear", | |
| "to_out.0", | |
| "proj_in", | |
| "proj_out", | |
| "ff.net.0.proj", | |
| "ff.net.2", | |
| "conv1", | |
| "conv2", | |
| "conv_shortcut", | |
| "downsamplers.0.conv", | |
| "upsamplers.0.conv", | |
| "time_emb_proj", | |
| ] | |
| lora_config = LoraConfig( | |
| r=args.lora_rank, | |
| target_modules=lora_target_modules, | |
| lora_alpha=args.lora_alpha, | |
| lora_dropout=args.lora_dropout, | |
| ) | |
| # Legacy | |
| # for k, v in lcm_pipe.unet.state_dict().items(): | |
| # if "lora" in k or "base_layer" in k: | |
| # lcm_dict[k.replace("default_0", "default")] = v | |
| unet.add_adapter(lora_config) | |
| if args.pretrained_lcm_lora_path is not None: | |
| incompatible_keys = set_peft_model_state_dict(unet, lora_state_dict, adapter_name="default") | |
| if incompatible_keys is not None: | |
| # check only for unexpected keys | |
| unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) | |
| if unexpected_keys: | |
| logger.warning( | |
| f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " | |
| f" {unexpected_keys}. " | |
| ) | |
| # 6. Freeze unet, vae, text_encoders. | |
| vae.requires_grad_(False) | |
| text_encoder_one.requires_grad_(False) | |
| text_encoder_two.requires_grad_(False) | |
| image_encoder.requires_grad_(False) | |
| unet.requires_grad_(False) | |
| # 10. Handle saving and loading of checkpoints | |
| # `accelerate` 0.16.0 will have better support for customized saving | |
| if args.save_only_adapter: | |
| # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
| def save_model_hook(models, weights, output_dir): | |
| if accelerator.is_main_process: | |
| for model in models: | |
| if isinstance(model, type(unwrap_model(unet))): # save adapter only | |
| unet_ = unwrap_model(model) | |
| # also save the checkpoints in native `diffusers` format so that it can be easily | |
| # be independently loaded via `load_lora_weights()`. | |
| state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet_)) | |
| StableDiffusionXLPipeline.save_lora_weights(output_dir, unet_lora_layers=state_dict, safe_serialization=False) | |
| weights.pop() | |
| def load_model_hook(models, input_dir): | |
| while len(models) > 0: | |
| # pop models so that they are not loaded again | |
| model = models.pop() | |
| if isinstance(model, type(unwrap_model(unet))): | |
| unet_ = unwrap_model(model) | |
| lora_state_dict, _ = StableDiffusionXLPipeline.lora_state_dict(input_dir) | |
| unet_state_dict = { | |
| f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.") | |
| } | |
| unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict) | |
| lora_state_dict = dict() | |
| for k, v in unet_state_dict.items(): | |
| if "ip" in k: | |
| k = k.replace("attn2", "attn2.processor") | |
| lora_state_dict[k] = v | |
| else: | |
| lora_state_dict[k] = v | |
| incompatible_keys = set_peft_model_state_dict(unet_, lora_state_dict, adapter_name="default") | |
| if incompatible_keys is not None: | |
| # check only for unexpected keys | |
| unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) | |
| if unexpected_keys: | |
| logger.warning( | |
| f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " | |
| f" {unexpected_keys}. " | |
| ) | |
| accelerator.register_save_state_pre_hook(save_model_hook) | |
| accelerator.register_load_state_pre_hook(load_model_hook) | |
| # 11. Enable optimizations | |
| if args.enable_xformers_memory_efficient_attention: | |
| if is_xformers_available(): | |
| import xformers | |
| xformers_version = version.parse(xformers.__version__) | |
| if xformers_version == version.parse("0.0.16"): | |
| logger.warning( | |
| "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
| ) | |
| unet.enable_xformers_memory_efficient_attention() | |
| else: | |
| raise ValueError("xformers is not available. Make sure it is installed correctly") | |
| # Enable TF32 for faster training on Ampere GPUs, | |
| # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
| if args.allow_tf32: | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| if args.gradient_checkpointing: | |
| unet.enable_gradient_checkpointing() | |
| vae.enable_gradient_checkpointing() | |
| # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | |
| if args.use_8bit_adam: | |
| try: | |
| import bitsandbytes as bnb | |
| except ImportError: | |
| raise ImportError( | |
| "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
| ) | |
| optimizer_class = bnb.optim.AdamW8bit | |
| else: | |
| optimizer_class = torch.optim.AdamW | |
| # 12. Optimizer creation | |
| lora_params, non_lora_params = seperate_lora_params_from_unet(unet) | |
| params_to_optimize = lora_params | |
| optimizer = optimizer_class( | |
| params_to_optimize, | |
| lr=args.learning_rate, | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon, | |
| ) | |
| # 13. Dataset creation and data processing | |
| # In distributed training, the load_dataset function guarantees that only one local process can concurrently | |
| # download the dataset. | |
| datasets = [] | |
| datasets_name = [] | |
| datasets_weights = [] | |
| deg_pipeline = RealESRGANDegradation(device=accelerator.device, resolution=args.resolution) | |
| if args.data_config_path is not None: | |
| data_config: DataConfig = pyrallis.load(DataConfig, open(args.data_config_path, "r")) | |
| for single_dataset in data_config.datasets: | |
| datasets_weights.append(single_dataset.dataset_weight) | |
| datasets_name.append(single_dataset.dataset_folder) | |
| dataset_dir = os.path.join(args.train_data_dir, single_dataset.dataset_folder) | |
| image_dataset = get_train_dataset(dataset_dir, dataset_dir, args, accelerator) | |
| image_dataset = prepare_train_dataset(image_dataset, accelerator, deg_pipeline) | |
| datasets.append(image_dataset) | |
| # TODO: Validation dataset | |
| if data_config.val_dataset is not None: | |
| val_dataset = get_train_dataset(dataset_name, dataset_dir, args, accelerator) | |
| logger.info(f"Datasets mixing: {list(zip(datasets_name, datasets_weights))}") | |
| # Mix training datasets. | |
| sampler_train = None | |
| if len(datasets) == 1: | |
| train_dataset = datasets[0] | |
| else: | |
| # Weighted each dataset | |
| train_dataset = torch.utils.data.ConcatDataset(datasets) | |
| dataset_weights = [] | |
| for single_dataset, single_weight in zip(datasets, datasets_weights): | |
| dataset_weights.extend([len(train_dataset) / len(single_dataset) * single_weight] * len(single_dataset)) | |
| sampler_train = torch.utils.data.WeightedRandomSampler( | |
| weights=dataset_weights, | |
| num_samples=len(dataset_weights) | |
| ) | |
| # DataLoaders creation: | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, | |
| sampler=sampler_train, | |
| shuffle=True if sampler_train is None else False, | |
| collate_fn=collate_fn, | |
| batch_size=args.train_batch_size, | |
| num_workers=args.dataloader_num_workers, | |
| ) | |
| # 14. Embeddings for the UNet. | |
| # Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids | |
| def compute_embeddings(prompt_batch, original_sizes, crop_coords, text_encoders, tokenizers, is_train=True): | |
| def compute_time_ids(original_size, crops_coords_top_left): | |
| target_size = (args.resolution, args.resolution) | |
| add_time_ids = list(original_size + crops_coords_top_left + target_size) | |
| add_time_ids = torch.tensor([add_time_ids]) | |
| add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype) | |
| return add_time_ids | |
| prompt_embeds, pooled_prompt_embeds = encode_prompt(prompt_batch, text_encoders, tokenizers, is_train) | |
| add_text_embeds = pooled_prompt_embeds | |
| add_time_ids = torch.cat([compute_time_ids(s, c) for s, c in zip(original_sizes, crop_coords)]) | |
| prompt_embeds = prompt_embeds.to(accelerator.device) | |
| add_text_embeds = add_text_embeds.to(accelerator.device) | |
| unet_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
| return {"prompt_embeds": prompt_embeds, **unet_added_cond_kwargs} | |
| text_encoders = [text_encoder_one, text_encoder_two] | |
| tokenizers = [tokenizer_one, tokenizer_two] | |
| compute_embeddings_fn = functools.partial(compute_embeddings, text_encoders=text_encoders, tokenizers=tokenizers) | |
| # Move pixels into latents. | |
| def convert_to_latent(pixels): | |
| model_input = vae.encode(pixels).latent_dist.sample() | |
| model_input = model_input * vae.config.scaling_factor | |
| if args.pretrained_vae_model_name_or_path is None: | |
| model_input = model_input.to(weight_dtype) | |
| return model_input | |
| # 15. LR Scheduler creation | |
| # Scheduler and math around the number of training steps. | |
| # Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation. | |
| num_warmup_steps_for_scheduler = args.lr_warmup_steps * accelerator.num_processes | |
| if args.max_train_steps is None: | |
| len_train_dataloader_after_sharding = math.ceil(len(train_dataloader) / accelerator.num_processes) | |
| num_update_steps_per_epoch = math.ceil(len_train_dataloader_after_sharding / args.gradient_accumulation_steps) | |
| num_training_steps_for_scheduler = ( | |
| args.num_train_epochs * num_update_steps_per_epoch * accelerator.num_processes | |
| ) | |
| else: | |
| num_training_steps_for_scheduler = args.max_train_steps * accelerator.num_processes | |
| if args.scale_lr: | |
| args.learning_rate = ( | |
| args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
| ) | |
| # Make sure the trainable params are in float32. | |
| if args.mixed_precision == "fp16": | |
| # only upcast trainable parameters (LoRA) into fp32 | |
| cast_training_params(unet, dtype=torch.float32) | |
| lr_scheduler = get_scheduler( | |
| args.lr_scheduler, | |
| optimizer=optimizer, | |
| num_warmup_steps=num_warmup_steps_for_scheduler, | |
| num_training_steps=num_training_steps_for_scheduler, | |
| ) | |
| # 16. Prepare for training | |
| # Prepare everything with our `accelerator`. | |
| unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| unet, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| # 8. Handle mixed precision and device placement | |
| # For mixed precision training we cast all non-trainable weigths to half-precision | |
| # as these weights are only used for inference, keeping weights in full precision is not required. | |
| weight_dtype = torch.float32 | |
| if accelerator.mixed_precision == "fp16": | |
| weight_dtype = torch.float16 | |
| elif accelerator.mixed_precision == "bf16": | |
| weight_dtype = torch.bfloat16 | |
| # Move unet, vae and text_encoder to device and cast to weight_dtype | |
| # The VAE is in float32 to avoid NaN losses. | |
| if args.pretrained_vae_model_name_or_path is None: | |
| vae.to(accelerator.device, dtype=torch.float32) | |
| else: | |
| vae.to(accelerator.device, dtype=weight_dtype) | |
| text_encoder_one.to(accelerator.device, dtype=weight_dtype) | |
| text_encoder_two.to(accelerator.device, dtype=weight_dtype) | |
| image_encoder.to(accelerator.device, dtype=weight_dtype) | |
| for p in non_lora_params: | |
| p.data = p.data.to(dtype=weight_dtype) | |
| for p in lora_params: | |
| p.requires_grad_(True) | |
| unet.to(accelerator.device) | |
| # Also move the alpha and sigma noise schedules to accelerator.device. | |
| alpha_schedule = alpha_schedule.to(accelerator.device) | |
| sigma_schedule = sigma_schedule.to(accelerator.device) | |
| solver = solver.to(accelerator.device) | |
| # Instantiate Loss. | |
| losses_configs: LossesConfig = pyrallis.load(LossesConfig, open(args.losses_config_path, "r")) | |
| lcm_losses = list() | |
| for loss_config in losses_configs.lcm_losses: | |
| logger.info(f"Loading lcm loss: {loss_config.name}") | |
| loss = namedtuple("loss", ["loss", "weight"]) | |
| loss_class = eval(loss_config.name) | |
| lcm_losses.append(loss(loss_class( | |
| visualize_every_k=loss_config.visualize_every_k, | |
| dtype=weight_dtype, | |
| accelerator=accelerator, | |
| dino_model=image_encoder, | |
| dino_preprocess=image_processor, | |
| huber_c=args.huber_c, | |
| **loss_config.init_params), weight=loss_config.weight)) | |
| # Final check. | |
| for n, p in unet.named_parameters(): | |
| if p.requires_grad: | |
| assert "lora" in n, n | |
| assert p.dtype == torch.float32, n | |
| else: | |
| assert "lora" not in n, f"{n}" | |
| assert p.dtype == weight_dtype, n | |
| if args.sanity_check: | |
| if args.resume_from_checkpoint: | |
| if args.resume_from_checkpoint != "latest": | |
| path = os.path.basename(args.resume_from_checkpoint) | |
| else: | |
| # Get the most recent checkpoint | |
| dirs = os.listdir(args.output_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] if len(dirs) > 0 else None | |
| if path is None: | |
| accelerator.print( | |
| f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
| ) | |
| args.resume_from_checkpoint = None | |
| initial_global_step = 0 | |
| else: | |
| accelerator.print(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(os.path.join(args.output_dir, path)) | |
| # Check input data | |
| batch = next(iter(train_dataloader)) | |
| lq_img, gt_img = deg_pipeline(batch["images"], (batch["kernel"], batch["kernel2"], batch["sinc_kernel"])) | |
| out_images = log_validation(unwrap_model(unet), vae, text_encoder_one, text_encoder_two, tokenizer_one, tokenizer_two, | |
| lcm_scheduler, image_encoder, image_processor, | |
| args, accelerator, weight_dtype, step=0, lq_img=lq_img, gt_img=gt_img, is_final_validation=False, log_local=True) | |
| exit() | |
| # We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if args.max_train_steps is None: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| if num_training_steps_for_scheduler != args.max_train_steps * accelerator.num_processes: | |
| logger.warning( | |
| f"The length of the 'train_dataloader' after 'accelerator.prepare' ({len(train_dataloader)}) does not match " | |
| f"the expected length ({len_train_dataloader_after_sharding}) when the learning rate scheduler was created. " | |
| f"This inconsistency may result in the learning rate scheduler not functioning properly." | |
| ) | |
| # Afterwards we recalculate our number of training epochs | |
| args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| # We need to initialize the trackers we use, and also store our configuration. | |
| # The trackers initializes automatically on the main process. | |
| if accelerator.is_main_process: | |
| tracker_config = dict(vars(args)) | |
| # tensorboard cannot handle list types for config | |
| tracker_config.pop("validation_prompt") | |
| tracker_config.pop("validation_image") | |
| accelerator.init_trackers(args.tracker_project_name, config=tracker_config) | |
| # 17. Train! | |
| total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num Epochs = {args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
| logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
| logger.info(f" Total optimization steps = {args.max_train_steps}") | |
| global_step = 0 | |
| first_epoch = 0 | |
| # Potentially load in the weights and states from a previous save | |
| if args.resume_from_checkpoint: | |
| if args.resume_from_checkpoint != "latest": | |
| path = os.path.basename(args.resume_from_checkpoint) | |
| else: | |
| # Get the most recent checkpoint | |
| dirs = os.listdir(args.output_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] if len(dirs) > 0 else None | |
| if path is None: | |
| accelerator.print( | |
| f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
| ) | |
| args.resume_from_checkpoint = None | |
| initial_global_step = 0 | |
| else: | |
| accelerator.print(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(os.path.join(args.output_dir, path)) | |
| global_step = int(path.split("-")[1]) | |
| initial_global_step = global_step | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| else: | |
| initial_global_step = 0 | |
| progress_bar = tqdm( | |
| range(0, args.max_train_steps), | |
| initial=initial_global_step, | |
| desc="Steps", | |
| # Only show the progress bar once on each machine. | |
| disable=not accelerator.is_local_main_process, | |
| ) | |
| unet.train() | |
| for epoch in range(first_epoch, args.num_train_epochs): | |
| for step, batch in enumerate(train_dataloader): | |
| with accelerator.accumulate(unet): | |
| total_loss = torch.tensor(0.0) | |
| bsz = batch["images"].shape[0] | |
| # Drop conditions. | |
| rand_tensor = torch.rand(bsz) | |
| drop_image_idx = rand_tensor < args.image_drop_rate | |
| drop_text_idx = (rand_tensor >= args.image_drop_rate) & (rand_tensor < args.image_drop_rate + args.text_drop_rate) | |
| drop_both_idx = (rand_tensor >= args.image_drop_rate + args.text_drop_rate) & (rand_tensor < args.image_drop_rate + args.text_drop_rate + args.cond_drop_rate) | |
| drop_image_idx = drop_image_idx | drop_both_idx | |
| drop_text_idx = drop_text_idx | drop_both_idx | |
| with torch.no_grad(): | |
| lq_img, gt_img = deg_pipeline(batch["images"], (batch["kernel"], batch["kernel2"], batch["sinc_kernel"])) | |
| lq_pt = image_processor( | |
| images=lq_img*0.5+0.5, | |
| do_rescale=False, return_tensors="pt" | |
| ).pixel_values | |
| image_embeds = prepare_training_image_embeds( | |
| image_encoder, image_processor, | |
| ip_adapter_image=lq_pt, ip_adapter_image_embeds=None, | |
| device=accelerator.device, drop_rate=args.image_drop_rate, output_hidden_state=args.image_encoder_hidden_feature, | |
| idx_to_replace=drop_image_idx | |
| ) | |
| uncond_image_embeds = prepare_training_image_embeds( | |
| image_encoder, image_processor, | |
| ip_adapter_image=lq_pt, ip_adapter_image_embeds=None, | |
| device=accelerator.device, drop_rate=1.0, output_hidden_state=args.image_encoder_hidden_feature, | |
| idx_to_replace=torch.ones_like(drop_image_idx) | |
| ) | |
| # 1. Load and process the image and text conditioning | |
| text, orig_size, crop_coords = ( | |
| batch["text"], | |
| batch["original_sizes"], | |
| batch["crop_top_lefts"], | |
| ) | |
| encoded_text = compute_embeddings_fn(text, orig_size, crop_coords) | |
| uncond_encoded_text = compute_embeddings_fn([""]*len(text), orig_size, crop_coords) | |
| # encode pixel values with batch size of at most args.vae_encode_batch_size | |
| gt_img = gt_img.to(dtype=vae.dtype) | |
| latents = [] | |
| for i in range(0, gt_img.shape[0], args.vae_encode_batch_size): | |
| latents.append(vae.encode(gt_img[i : i + args.vae_encode_batch_size]).latent_dist.sample()) | |
| latents = torch.cat(latents, dim=0) | |
| # latents = convert_to_latent(gt_img) | |
| latents = latents * vae.config.scaling_factor | |
| if args.pretrained_vae_model_name_or_path is None: | |
| latents = latents.to(weight_dtype) | |
| # 2. Sample a random timestep for each image t_n from the ODE solver timesteps without bias. | |
| # For the DDIM solver, the timestep schedule is [T - 1, T - k - 1, T - 2 * k - 1, ...] | |
| bsz = latents.shape[0] | |
| topk = noise_scheduler.config.num_train_timesteps // args.num_ddim_timesteps | |
| index = torch.randint(0, args.num_ddim_timesteps, (bsz,), device=latents.device).long() | |
| start_timesteps = solver.ddim_timesteps[index] | |
| timesteps = start_timesteps - topk | |
| timesteps = torch.where(timesteps < 0, torch.zeros_like(timesteps), timesteps) | |
| # 3. Get boundary scalings for start_timesteps and (end) timesteps. | |
| c_skip_start, c_out_start = scalings_for_boundary_conditions( | |
| start_timesteps, timestep_scaling=args.timestep_scaling_factor | |
| ) | |
| c_skip_start, c_out_start = [append_dims(x, latents.ndim) for x in [c_skip_start, c_out_start]] | |
| c_skip, c_out = scalings_for_boundary_conditions( | |
| timesteps, timestep_scaling=args.timestep_scaling_factor | |
| ) | |
| c_skip, c_out = [append_dims(x, latents.ndim) for x in [c_skip, c_out]] | |
| # 4. Sample noise from the prior and add it to the latents according to the noise magnitude at each | |
| # timestep (this is the forward diffusion process) [z_{t_{n + k}} in Algorithm 1] | |
| noise = torch.randn_like(latents) | |
| noisy_model_input = noise_scheduler.add_noise(latents, noise, start_timesteps) | |
| # 5. Sample a random guidance scale w from U[w_min, w_max] | |
| # Note that for LCM-LoRA distillation it is not necessary to use a guidance scale embedding | |
| w = (args.w_max - args.w_min) * torch.rand((bsz,)) + args.w_min | |
| w = w.reshape(bsz, 1, 1, 1) | |
| w = w.to(device=latents.device, dtype=latents.dtype) | |
| # 6. Prepare prompt embeds and unet_added_conditions | |
| prompt_embeds = encoded_text.pop("prompt_embeds") | |
| encoded_text["image_embeds"] = image_embeds | |
| uncond_prompt_embeds = uncond_encoded_text.pop("prompt_embeds") | |
| uncond_encoded_text["image_embeds"] = image_embeds | |
| # 7. Get online LCM prediction on z_{t_{n + k}} (noisy_model_input), w, c, t_{n + k} (start_timesteps) | |
| noise_pred = unet( | |
| noisy_model_input, | |
| start_timesteps, | |
| encoder_hidden_states=uncond_prompt_embeds, | |
| added_cond_kwargs=uncond_encoded_text, | |
| ).sample | |
| pred_x_0 = get_predicted_original_sample( | |
| noise_pred, | |
| start_timesteps, | |
| noisy_model_input, | |
| noise_scheduler.config.prediction_type, | |
| alpha_schedule, | |
| sigma_schedule, | |
| ) | |
| model_pred = c_skip_start * noisy_model_input + c_out_start * pred_x_0 | |
| # 8. Compute the conditional and unconditional teacher model predictions to get CFG estimates of the | |
| # predicted noise eps_0 and predicted original sample x_0, then run the ODE solver using these | |
| # estimates to predict the data point in the augmented PF-ODE trajectory corresponding to the next ODE | |
| # solver timestep. | |
| # With the adapters disabled, the `unet` is the regular teacher model. | |
| accelerator.unwrap_model(unet).disable_adapters() | |
| with torch.no_grad(): | |
| # 1. Get teacher model prediction on noisy_model_input z_{t_{n + k}} and conditional embedding c | |
| teacher_added_cond = dict() | |
| for k,v in encoded_text.items(): | |
| if isinstance(v, torch.Tensor): | |
| teacher_added_cond[k] = v.to(weight_dtype) | |
| else: | |
| teacher_image_embeds = [] | |
| for img_emb in v: | |
| teacher_image_embeds.append(img_emb.to(weight_dtype)) | |
| teacher_added_cond[k] = teacher_image_embeds | |
| cond_teacher_output = unet( | |
| noisy_model_input, | |
| start_timesteps, | |
| encoder_hidden_states=prompt_embeds, | |
| added_cond_kwargs=teacher_added_cond, | |
| ).sample | |
| cond_pred_x0 = get_predicted_original_sample( | |
| cond_teacher_output, | |
| start_timesteps, | |
| noisy_model_input, | |
| noise_scheduler.config.prediction_type, | |
| alpha_schedule, | |
| sigma_schedule, | |
| ) | |
| cond_pred_noise = get_predicted_noise( | |
| cond_teacher_output, | |
| start_timesteps, | |
| noisy_model_input, | |
| noise_scheduler.config.prediction_type, | |
| alpha_schedule, | |
| sigma_schedule, | |
| ) | |
| # 2. Get teacher model prediction on noisy_model_input z_{t_{n + k}} and unconditional embedding 0 | |
| teacher_added_uncond = dict() | |
| uncond_encoded_text["image_embeds"] = uncond_image_embeds | |
| for k,v in uncond_encoded_text.items(): | |
| if isinstance(v, torch.Tensor): | |
| teacher_added_uncond[k] = v.to(weight_dtype) | |
| else: | |
| teacher_uncond_image_embeds = [] | |
| for img_emb in v: | |
| teacher_uncond_image_embeds.append(img_emb.to(weight_dtype)) | |
| teacher_added_uncond[k] = teacher_uncond_image_embeds | |
| uncond_teacher_output = unet( | |
| noisy_model_input, | |
| start_timesteps, | |
| encoder_hidden_states=uncond_prompt_embeds.to(weight_dtype), | |
| added_cond_kwargs=teacher_added_uncond, | |
| ).sample | |
| uncond_pred_x0 = get_predicted_original_sample( | |
| uncond_teacher_output, | |
| start_timesteps, | |
| noisy_model_input, | |
| noise_scheduler.config.prediction_type, | |
| alpha_schedule, | |
| sigma_schedule, | |
| ) | |
| uncond_pred_noise = get_predicted_noise( | |
| uncond_teacher_output, | |
| start_timesteps, | |
| noisy_model_input, | |
| noise_scheduler.config.prediction_type, | |
| alpha_schedule, | |
| sigma_schedule, | |
| ) | |
| # 3. Calculate the CFG estimate of x_0 (pred_x0) and eps_0 (pred_noise) | |
| # Note that this uses the LCM paper's CFG formulation rather than the Imagen CFG formulation | |
| pred_x0 = cond_pred_x0 + w * (cond_pred_x0 - uncond_pred_x0) | |
| pred_noise = cond_pred_noise + w * (cond_pred_noise - uncond_pred_noise) | |
| # 4. Run one step of the ODE solver to estimate the next point x_prev on the | |
| # augmented PF-ODE trajectory (solving backward in time) | |
| # Note that the DDIM step depends on both the predicted x_0 and source noise eps_0. | |
| x_prev = solver.ddim_step(pred_x0, pred_noise, index).to(weight_dtype) | |
| # re-enable unet adapters to turn the `unet` into a student unet. | |
| accelerator.unwrap_model(unet).enable_adapters() | |
| # 9. Get target LCM prediction on x_prev, w, c, t_n (timesteps) | |
| # Note that we do not use a separate target network for LCM-LoRA distillation. | |
| with torch.no_grad(): | |
| uncond_encoded_text["image_embeds"] = image_embeds | |
| target_added_cond = dict() | |
| for k,v in uncond_encoded_text.items(): | |
| if isinstance(v, torch.Tensor): | |
| target_added_cond[k] = v.to(weight_dtype) | |
| else: | |
| target_image_embeds = [] | |
| for img_emb in v: | |
| target_image_embeds.append(img_emb.to(weight_dtype)) | |
| target_added_cond[k] = target_image_embeds | |
| target_noise_pred = unet( | |
| x_prev, | |
| timesteps, | |
| encoder_hidden_states=uncond_prompt_embeds.to(weight_dtype), | |
| added_cond_kwargs=target_added_cond, | |
| ).sample | |
| pred_x_0 = get_predicted_original_sample( | |
| target_noise_pred, | |
| timesteps, | |
| x_prev, | |
| noise_scheduler.config.prediction_type, | |
| alpha_schedule, | |
| sigma_schedule, | |
| ) | |
| target = c_skip * x_prev + c_out * pred_x_0 | |
| # 10. Calculate loss | |
| lcm_loss_arguments = { | |
| "target": target.float(), | |
| "predict": model_pred.float(), | |
| } | |
| loss_dict = dict() | |
| # total_loss = total_loss + torch.mean( | |
| # torch.sqrt((model_pred.float() - target.float()) ** 2 + args.huber_c**2) - args.huber_c | |
| # ) | |
| # loss_dict["L2Loss"] = total_loss.item() | |
| for loss_config in lcm_losses: | |
| if loss_config.loss.__class__.__name__=="DINOLoss": | |
| with torch.no_grad(): | |
| pixel_target = [] | |
| latent_target = target.to(dtype=vae.dtype) | |
| for i in range(0, latent_target.shape[0], args.vae_encode_batch_size): | |
| pixel_target.append( | |
| vae.decode( | |
| latent_target[i : i + args.vae_encode_batch_size] / vae.config.scaling_factor, | |
| return_dict=False | |
| )[0] | |
| ) | |
| pixel_target = torch.cat(pixel_target, dim=0) | |
| pixel_pred = [] | |
| latent_pred = model_pred.to(dtype=vae.dtype) | |
| for i in range(0, latent_pred.shape[0], args.vae_encode_batch_size): | |
| pixel_pred.append( | |
| vae.decode( | |
| latent_pred[i : i + args.vae_encode_batch_size] / vae.config.scaling_factor, | |
| return_dict=False | |
| )[0] | |
| ) | |
| pixel_pred = torch.cat(pixel_pred, dim=0) | |
| dino_loss_arguments = { | |
| "target": pixel_target, | |
| "predict": pixel_pred, | |
| } | |
| non_weighted_loss = loss_config.loss(**dino_loss_arguments, accelerator=accelerator) | |
| loss_dict[loss_config.loss.__class__.__name__] = non_weighted_loss.item() | |
| total_loss = total_loss + non_weighted_loss * loss_config.weight | |
| else: | |
| non_weighted_loss = loss_config.loss(**lcm_loss_arguments, accelerator=accelerator) | |
| total_loss = total_loss + non_weighted_loss * loss_config.weight | |
| loss_dict[loss_config.loss.__class__.__name__] = non_weighted_loss.item() | |
| # 11. Backpropagate on the online student model (`unet`) (only LoRA) | |
| accelerator.backward(total_loss) | |
| if accelerator.sync_gradients: | |
| accelerator.clip_grad_norm_(params_to_optimize, args.max_grad_norm) | |
| optimizer.step() | |
| lr_scheduler.step() | |
| optimizer.zero_grad(set_to_none=True) | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| progress_bar.update(1) | |
| global_step += 1 | |
| if accelerator.is_main_process: | |
| if global_step % args.checkpointing_steps == 0: | |
| # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
| if args.checkpoints_total_limit is not None: | |
| checkpoints = os.listdir(args.output_dir) | |
| checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
| checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
| # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
| if len(checkpoints) >= args.checkpoints_total_limit: | |
| num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
| removing_checkpoints = checkpoints[0:num_to_remove] | |
| logger.info( | |
| f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
| ) | |
| logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
| for removing_checkpoint in removing_checkpoints: | |
| removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
| shutil.rmtree(removing_checkpoint) | |
| save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
| accelerator.save_state(save_path) | |
| logger.info(f"Saved state to {save_path}") | |
| if global_step % args.validation_steps == 0: | |
| out_images = log_validation(unwrap_model(unet), vae, text_encoder_one, text_encoder_two, tokenizer_one, tokenizer_two, | |
| lcm_scheduler, image_encoder, image_processor, | |
| args, accelerator, weight_dtype, global_step, lq_img, gt_img, is_final_validation=False, log_local=False) | |
| logs = dict() | |
| # logs.update({"loss": loss.detach().item()}) | |
| logs.update(loss_dict) | |
| logs.update({"lr": lr_scheduler.get_last_lr()[0]}) | |
| progress_bar.set_postfix(**logs) | |
| accelerator.log(logs, step=global_step) | |
| if global_step >= args.max_train_steps: | |
| break | |
| # Create the pipeline using using the trained modules and save it. | |
| accelerator.wait_for_everyone() | |
| if accelerator.is_main_process: | |
| unet = accelerator.unwrap_model(unet) | |
| unet_lora_state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet)) | |
| StableDiffusionXLPipeline.save_lora_weights(args.output_dir, unet_lora_layers=unet_lora_state_dict) | |
| if args.push_to_hub: | |
| upload_folder( | |
| repo_id=repo_id, | |
| folder_path=args.output_dir, | |
| commit_message="End of training", | |
| ignore_patterns=["step_*", "epoch_*"], | |
| ) | |
| del unet | |
| torch.cuda.empty_cache() | |
| # Final inference. | |
| if args.validation_steps is not None: | |
| log_validation(unwrap_model(unet), vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2, | |
| lcm_scheduler, image_encoder=None, image_processor=None, | |
| args=args, accelerator=accelerator, weight_dtype=weight_dtype, step=0, is_final_validation=False, log_local=True) | |
| accelerator.end_training() | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| main(args) |