Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| def tokenize_prompt(tokenizer, prompt): | |
| text_inputs = tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| return text_input_ids | |
| # Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt | |
| def encode_prompt(text_encoders, tokenizers, prompt, text_input_ids_list=None): | |
| prompt_embeds_list = [] | |
| for i, text_encoder in enumerate(text_encoders): | |
| if tokenizers is not None: | |
| tokenizer = tokenizers[i] | |
| text_input_ids = tokenize_prompt(tokenizer, prompt) | |
| else: | |
| assert text_input_ids_list is not None | |
| text_input_ids = text_input_ids_list[i] | |
| prompt_embeds = text_encoder( | |
| text_input_ids.to(text_encoder.device), | |
| output_hidden_states=True, | |
| ) | |
| # We are only ALWAYS interested in the pooled output of the final text encoder | |
| pooled_prompt_embeds = prompt_embeds[0] | |
| prompt_embeds = prompt_embeds.hidden_states[-2] | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) | |
| prompt_embeds_list.append(prompt_embeds) | |
| prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
| pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) | |
| return prompt_embeds, pooled_prompt_embeds | |
| def add_tokens(tokenizers, tokens, text_encoders): | |
| new_token_indices = {} | |
| for idx, tokenizer in enumerate(tokenizers): | |
| for token in tokens: | |
| num_added_tokens = tokenizer.add_tokens(token) | |
| if num_added_tokens == 0: | |
| raise ValueError( | |
| f"The tokenizer already contains the token {token}. Please pass a different" | |
| " `placeholder_token` that is not already in the tokenizer." | |
| ) | |
| new_token_indices[f"{idx}_{token}"] = num_added_tokens | |
| # resize embedding layers to avoid crash. We will never actually use these. | |
| text_encoders[idx].resize_token_embeddings(len(tokenizer), pad_to_multiple_of=128) | |
| return new_token_indices | |
| def patch_embedding_forward(embedding_layer, new_tokens, new_embeddings): | |
| def new_forward(input): | |
| embedded_text = torch.nn.functional.embedding( | |
| input, embedding_layer.weight, embedding_layer.padding_idx, embedding_layer.max_norm, | |
| embedding_layer.norm_type, embedding_layer.scale_grad_by_freq, embedding_layer.sparse) | |
| replace_indices = (input == new_tokens) | |
| if torch.count_nonzero(replace_indices) > 0: | |
| embedded_text[replace_indices] = new_embeddings | |
| return embedded_text | |
| embedding_layer.forward = new_forward |