Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 The InstantX Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| import torch.nn.functional as F | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPTextModel, | |
| CLIPTextModelWithProjection, | |
| CLIPTokenizer, | |
| CLIPVisionModelWithProjection, | |
| ) | |
| from diffusers.utils.import_utils import is_invisible_watermark_available | |
| from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
| from diffusers.loaders import ( | |
| FromSingleFileMixin, | |
| IPAdapterMixin, | |
| StableDiffusionXLLoraLoaderMixin, | |
| TextualInversionLoaderMixin, | |
| ) | |
| from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel | |
| from diffusers.models.attention_processor import ( | |
| AttnProcessor2_0, | |
| LoRAAttnProcessor2_0, | |
| LoRAXFormersAttnProcessor, | |
| XFormersAttnProcessor, | |
| ) | |
| from diffusers.models.lora import adjust_lora_scale_text_encoder | |
| from diffusers.schedulers import KarrasDiffusionSchedulers, LCMScheduler | |
| from diffusers.utils import ( | |
| USE_PEFT_BACKEND, | |
| deprecate, | |
| logging, | |
| replace_example_docstring, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| convert_unet_state_dict_to_peft | |
| ) | |
| from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin | |
| from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput | |
| if is_invisible_watermark_available(): | |
| from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker | |
| from peft import LoraConfig, set_peft_model_state_dict | |
| from module.aggregator import Aggregator | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> # !pip install diffusers pillow transformers accelerate | |
| >>> import torch | |
| >>> from PIL import Image | |
| >>> from diffusers import DDPMScheduler | |
| >>> from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler | |
| >>> from module.ip_adapter.utils import load_adapter_to_pipe | |
| >>> from pipelines.sdxl_instantir import InstantIRPipeline | |
| >>> # download models under ./models | |
| >>> dcp_adapter = f'./models/adapter.pt' | |
| >>> previewer_lora_path = f'./models' | |
| >>> instantir_path = f'./models/aggregator.pt' | |
| >>> # load pretrained models | |
| >>> pipe = InstantIRPipeline.from_pretrained( | |
| ... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16 | |
| ... ) | |
| >>> # load adapter | |
| >>> load_adapter_to_pipe( | |
| ... pipe, | |
| ... dcp_adapter, | |
| ... image_encoder_or_path = 'facebook/dinov2-large', | |
| ... ) | |
| >>> # load previewer lora | |
| >>> pipe.prepare_previewers(previewer_lora_path) | |
| >>> pipe.scheduler = DDPMScheduler.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', subfolder="scheduler") | |
| >>> lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config) | |
| >>> # load aggregator weights | |
| >>> pretrained_state_dict = torch.load(instantir_path) | |
| >>> pipe.aggregator.load_state_dict(pretrained_state_dict) | |
| >>> # send to GPU and fp16 | |
| >>> pipe.to(device="cuda", dtype=torch.float16) | |
| >>> pipe.aggregator.to(device="cuda", dtype=torch.float16) | |
| >>> pipe.enable_model_cpu_offload() | |
| >>> # load a broken image | |
| >>> low_quality_image = Image.open('path/to/your-image').convert("RGB") | |
| >>> # restoration | |
| >>> image = pipe( | |
| ... image=low_quality_image, | |
| ... previewer_scheduler=lcm_scheduler, | |
| ... ).images[0] | |
| ``` | |
| """ | |
| LCM_LORA_MODULES = [ | |
| "to_q", | |
| "to_k", | |
| "to_v", | |
| "to_out.0", | |
| "proj_in", | |
| "proj_out", | |
| "ff.net.0.proj", | |
| "ff.net.2", | |
| "conv1", | |
| "conv2", | |
| "conv_shortcut", | |
| "downsamplers.0.conv", | |
| "upsamplers.0.conv", | |
| "time_emb_proj", | |
| ] | |
| PREVIEWER_LORA_MODULES = [ | |
| "to_q", | |
| "to_kv", | |
| "0.to_out", | |
| "attn1.to_k", | |
| "attn1.to_v", | |
| "to_k_ip", | |
| "to_v_ip", | |
| "ln_k_ip.linear", | |
| "ln_v_ip.linear", | |
| "to_out.0", | |
| "proj_in", | |
| "proj_out", | |
| "ff.net.0.proj", | |
| "ff.net.2", | |
| "conv1", | |
| "conv2", | |
| "conv_shortcut", | |
| "downsamplers.0.conv", | |
| "upsamplers.0.conv", | |
| "time_emb_proj", | |
| ] | |
| def remove_attn2(model): | |
| def recursive_find_module(name, module): | |
| if not "up_blocks" in name and not "down_blocks" in name and not "mid_block" in name: return | |
| elif "resnets" in name: return | |
| if hasattr(module, "attn2"): | |
| setattr(module, "attn2", None) | |
| setattr(module, "norm2", None) | |
| return | |
| for sub_name, sub_module in module.named_children(): | |
| recursive_find_module(f"{name}.{sub_name}", sub_module) | |
| for name, module in model.named_children(): | |
| recursive_find_module(name, module) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg | |
| def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
| """ | |
| Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
| Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
| """ | |
| std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
| std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
| # rescale the results from guidance (fixes overexposure) | |
| noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
| # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
| noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
| return noise_cfg | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default | |
| timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` | |
| must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class InstantIRPipeline( | |
| DiffusionPipeline, | |
| StableDiffusionMixin, | |
| TextualInversionLoaderMixin, | |
| StableDiffusionXLLoraLoaderMixin, | |
| IPAdapterMixin, | |
| FromSingleFileMixin, | |
| ): | |
| r""" | |
| Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| The pipeline also inherits the following loading methods: | |
| - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
| - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
| - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights | |
| - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files | |
| - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
| text_encoder ([`~transformers.CLIPTextModel`]): | |
| Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
| text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]): | |
| Second frozen text-encoder | |
| ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)). | |
| tokenizer ([`~transformers.CLIPTokenizer`]): | |
| A `CLIPTokenizer` to tokenize text. | |
| tokenizer_2 ([`~transformers.CLIPTokenizer`]): | |
| A `CLIPTokenizer` to tokenize text. | |
| unet ([`UNet2DConditionModel`]): | |
| A `UNet2DConditionModel` to denoise the encoded image latents. | |
| controlnet ([`ControlNetModel`] or `List[ControlNetModel]`): | |
| Provides additional conditioning to the `unet` during the denoising process. If you set multiple | |
| ControlNets as a list, the outputs from each ControlNet are added together to create one combined | |
| additional conditioning. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): | |
| Whether the negative prompt embeddings should always be set to 0. Also see the config of | |
| `stabilityai/stable-diffusion-xl-base-1-0`. | |
| add_watermarker (`bool`, *optional*): | |
| Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to | |
| watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no | |
| watermarker is used. | |
| """ | |
| # leave controlnet out on purpose because it iterates with unet | |
| model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae" | |
| _optional_components = [ | |
| "tokenizer", | |
| "tokenizer_2", | |
| "text_encoder", | |
| "text_encoder_2", | |
| "feature_extractor", | |
| "image_encoder", | |
| ] | |
| _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| text_encoder_2: CLIPTextModelWithProjection, | |
| tokenizer: CLIPTokenizer, | |
| tokenizer_2: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| aggregator: Aggregator = None, | |
| force_zeros_for_empty_prompt: bool = True, | |
| add_watermarker: Optional[bool] = None, | |
| feature_extractor: CLIPImageProcessor = None, | |
| image_encoder: CLIPVisionModelWithProjection = None, | |
| ): | |
| super().__init__() | |
| if aggregator is None: | |
| aggregator = Aggregator.from_unet(unet) | |
| remove_attn2(aggregator) | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| unet=unet, | |
| aggregator=aggregator, | |
| scheduler=scheduler, | |
| feature_extractor=feature_extractor, | |
| image_encoder=image_encoder, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) | |
| self.control_image_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=True | |
| ) | |
| add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() | |
| if add_watermarker: | |
| self.watermark = StableDiffusionXLWatermarker() | |
| else: | |
| self.watermark = None | |
| self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) | |
| def prepare_previewers(self, previewer_lora_path: str, use_lcm=False): | |
| if use_lcm: | |
| lora_state_dict, alpha_dict = self.lora_state_dict( | |
| previewer_lora_path, | |
| ) | |
| else: | |
| lora_state_dict, alpha_dict = self.lora_state_dict( | |
| previewer_lora_path, | |
| weight_name="previewer_lora_weights.bin" | |
| ) | |
| unet_state_dict = { | |
| f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.") | |
| } | |
| unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict) | |
| lora_state_dict = dict() | |
| for k, v in unet_state_dict.items(): | |
| if "ip" in k: | |
| k = k.replace("attn2", "attn2.processor") | |
| lora_state_dict[k] = v | |
| else: | |
| lora_state_dict[k] = v | |
| if alpha_dict: | |
| lora_alpha = next(iter(alpha_dict.values())) | |
| else: | |
| lora_alpha = 1 | |
| logger.info(f"use lora alpha {lora_alpha}") | |
| lora_config = LoraConfig( | |
| r=64, | |
| target_modules=LCM_LORA_MODULES if use_lcm else PREVIEWER_LORA_MODULES, | |
| lora_alpha=lora_alpha, | |
| lora_dropout=0.0, | |
| ) | |
| adapter_name = "lcm" if use_lcm else "previewer" | |
| self.unet.add_adapter(lora_config, adapter_name) | |
| incompatible_keys = set_peft_model_state_dict(self.unet, lora_state_dict, adapter_name=adapter_name) | |
| if incompatible_keys is not None: | |
| # check only for unexpected keys | |
| unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) | |
| missing_keys = getattr(incompatible_keys, "missing_keys", None) | |
| if unexpected_keys: | |
| raise ValueError( | |
| f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " | |
| f" {unexpected_keys}. " | |
| ) | |
| self.unet.disable_adapters() | |
| return lora_alpha | |
| # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt | |
| def encode_prompt( | |
| self, | |
| prompt: str, | |
| prompt_2: Optional[str] = None, | |
| device: Optional[torch.device] = None, | |
| num_images_per_prompt: int = 1, | |
| do_classifier_free_guidance: bool = True, | |
| negative_prompt: Optional[str] = None, | |
| negative_prompt_2: Optional[str] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| lora_scale: Optional[float] = None, | |
| clip_skip: Optional[int] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| used in both text-encoders | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| negative_prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
| `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
| input argument. | |
| lora_scale (`float`, *optional*): | |
| A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| """ | |
| device = device or self._execution_device | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| # dynamically adjust the LoRA scale | |
| if self.text_encoder is not None: | |
| if not USE_PEFT_BACKEND: | |
| adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
| else: | |
| scale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None: | |
| if not USE_PEFT_BACKEND: | |
| adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) | |
| else: | |
| scale_lora_layers(self.text_encoder_2, lora_scale) | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| if prompt is not None: | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| # Define tokenizers and text encoders | |
| tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] | |
| text_encoders = ( | |
| [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | |
| ) | |
| if prompt_embeds is None: | |
| prompt_2 = prompt_2 or prompt | |
| prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | |
| # textual inversion: process multi-vector tokens if necessary | |
| prompt_embeds_list = [] | |
| prompts = [prompt, prompt_2] | |
| for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, tokenizer) | |
| text_inputs = tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) | |
| # We are only ALWAYS interested in the pooled output of the final text encoder | |
| pooled_prompt_embeds = prompt_embeds[0] | |
| if clip_skip is None: | |
| prompt_embeds = prompt_embeds.hidden_states[-2] | |
| else: | |
| # "2" because SDXL always indexes from the penultimate layer. | |
| prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] | |
| prompt_embeds_list.append(prompt_embeds) | |
| prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
| # get unconditional embeddings for classifier free guidance | |
| zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt | |
| if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: | |
| negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
| negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) | |
| elif do_classifier_free_guidance and negative_prompt_embeds is None: | |
| negative_prompt = negative_prompt or "" | |
| negative_prompt_2 = negative_prompt_2 or negative_prompt | |
| # normalize str to list | |
| negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt | |
| negative_prompt_2 = ( | |
| batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 | |
| ) | |
| uncond_tokens: List[str] | |
| if prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = [negative_prompt, negative_prompt_2] | |
| negative_prompt_embeds_list = [] | |
| for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = tokenizer( | |
| negative_prompt, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| negative_prompt_embeds = text_encoder( | |
| uncond_input.input_ids.to(device), | |
| output_hidden_states=True, | |
| ) | |
| # We are only ALWAYS interested in the pooled output of the final text encoder | |
| negative_pooled_prompt_embeds = negative_prompt_embeds[0] | |
| negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] | |
| negative_prompt_embeds_list.append(negative_prompt_embeds) | |
| negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) | |
| if self.text_encoder_2 is not None: | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
| else: | |
| prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| if self.text_encoder_2 is not None: | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
| else: | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
| bs_embed * num_images_per_prompt, -1 | |
| ) | |
| if do_classifier_free_guidance: | |
| negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
| bs_embed * num_images_per_prompt, -1 | |
| ) | |
| if self.text_encoder is not None: | |
| if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None: | |
| if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder_2, lora_scale) | |
| return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image | |
| def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, torch.Tensor): | |
| image = self.feature_extractor(image, return_tensors="pt").pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| if output_hidden_states: | |
| image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] | |
| image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
| uncond_image_enc_hidden_states = self.image_encoder( | |
| torch.zeros_like(image), output_hidden_states=True | |
| ).hidden_states[-2] | |
| uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( | |
| num_images_per_prompt, dim=0 | |
| ) | |
| return image_enc_hidden_states, uncond_image_enc_hidden_states | |
| else: | |
| if isinstance(self.image_encoder, CLIPVisionModelWithProjection): | |
| # CLIP image encoder. | |
| image_embeds = self.image_encoder(image).image_embeds | |
| image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| uncond_image_embeds = torch.zeros_like(image_embeds) | |
| else: | |
| # DINO image encoder. | |
| image_embeds = self.image_encoder(image).last_hidden_state | |
| image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| uncond_image_embeds = self.image_encoder( | |
| torch.zeros_like(image) | |
| ).last_hidden_state | |
| uncond_image_embeds = uncond_image_embeds.repeat_interleave( | |
| num_images_per_prompt, dim=0 | |
| ) | |
| return image_embeds, uncond_image_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds | |
| def prepare_ip_adapter_image_embeds( | |
| self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance | |
| ): | |
| if ip_adapter_image_embeds is None: | |
| if not isinstance(ip_adapter_image, list): | |
| ip_adapter_image = [ip_adapter_image] | |
| if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): | |
| if isinstance(ip_adapter_image[0], list): | |
| raise ValueError( | |
| f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." | |
| ) | |
| else: | |
| logger.warning( | |
| f"Got {len(ip_adapter_image)} images for {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." | |
| " By default, these images will be sent to each IP-Adapter. If this is not your use-case, please specify `ip_adapter_image` as a list of image-list, with" | |
| f" length equals to the number of IP-Adapters." | |
| ) | |
| ip_adapter_image = [ip_adapter_image] * len(self.unet.encoder_hid_proj.image_projection_layers) | |
| image_embeds = [] | |
| for single_ip_adapter_image, image_proj_layer in zip( | |
| ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers | |
| ): | |
| output_hidden_state = isinstance(self.image_encoder, CLIPVisionModelWithProjection) and not isinstance(image_proj_layer, ImageProjection) | |
| single_image_embeds, single_negative_image_embeds = self.encode_image( | |
| single_ip_adapter_image, device, 1, output_hidden_state | |
| ) | |
| single_image_embeds = torch.stack([single_image_embeds] * (num_images_per_prompt//single_image_embeds.shape[0]), dim=0) | |
| single_negative_image_embeds = torch.stack( | |
| [single_negative_image_embeds] * (num_images_per_prompt//single_negative_image_embeds.shape[0]), dim=0 | |
| ) | |
| if do_classifier_free_guidance: | |
| single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) | |
| single_image_embeds = single_image_embeds.to(device) | |
| image_embeds.append(single_image_embeds) | |
| else: | |
| repeat_dims = [1] | |
| image_embeds = [] | |
| for single_image_embeds in ip_adapter_image_embeds: | |
| if do_classifier_free_guidance: | |
| single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) | |
| single_image_embeds = single_image_embeds.repeat( | |
| num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) | |
| ) | |
| single_negative_image_embeds = single_negative_image_embeds.repeat( | |
| num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])) | |
| ) | |
| single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) | |
| else: | |
| single_image_embeds = single_image_embeds.repeat( | |
| num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) | |
| ) | |
| image_embeds.append(single_image_embeds) | |
| return image_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| prompt_2, | |
| image, | |
| callback_steps, | |
| negative_prompt=None, | |
| negative_prompt_2=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| pooled_prompt_embeds=None, | |
| ip_adapter_image=None, | |
| ip_adapter_image_embeds=None, | |
| negative_pooled_prompt_embeds=None, | |
| controlnet_conditioning_scale=1.0, | |
| control_guidance_start=0.0, | |
| control_guidance_end=1.0, | |
| callback_on_step_end_tensor_inputs=None, | |
| ): | |
| if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt_2 is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | |
| raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| elif negative_prompt_2 is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if prompt_embeds is not None and pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
| ) | |
| if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." | |
| ) | |
| # Check `image` | |
| is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( | |
| self.aggregator, torch._dynamo.eval_frame.OptimizedModule | |
| ) | |
| if ( | |
| isinstance(self.aggregator, Aggregator) | |
| or is_compiled | |
| and isinstance(self.aggregator._orig_mod, Aggregator) | |
| ): | |
| self.check_image(image, prompt, prompt_embeds) | |
| else: | |
| assert False | |
| if control_guidance_start >= control_guidance_end: | |
| raise ValueError( | |
| f"control guidance start: {control_guidance_start} cannot be larger or equal to control guidance end: {control_guidance_end}." | |
| ) | |
| if control_guidance_start < 0.0: | |
| raise ValueError(f"control guidance start: {control_guidance_start} can't be smaller than 0.") | |
| if control_guidance_end > 1.0: | |
| raise ValueError(f"control guidance end: {control_guidance_end} can't be larger than 1.0.") | |
| if ip_adapter_image is not None and ip_adapter_image_embeds is not None: | |
| raise ValueError( | |
| "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." | |
| ) | |
| if ip_adapter_image_embeds is not None: | |
| if not isinstance(ip_adapter_image_embeds, list): | |
| raise ValueError( | |
| f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" | |
| ) | |
| elif ip_adapter_image_embeds[0].ndim not in [3, 4]: | |
| raise ValueError( | |
| f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" | |
| ) | |
| # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image | |
| def check_image(self, image, prompt, prompt_embeds): | |
| image_is_pil = isinstance(image, PIL.Image.Image) | |
| image_is_tensor = isinstance(image, torch.Tensor) | |
| image_is_np = isinstance(image, np.ndarray) | |
| image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) | |
| image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) | |
| image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) | |
| if ( | |
| not image_is_pil | |
| and not image_is_tensor | |
| and not image_is_np | |
| and not image_is_pil_list | |
| and not image_is_tensor_list | |
| and not image_is_np_list | |
| ): | |
| raise TypeError( | |
| f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" | |
| ) | |
| if image_is_pil: | |
| image_batch_size = 1 | |
| else: | |
| image_batch_size = len(image) | |
| if prompt is not None and isinstance(prompt, str): | |
| prompt_batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| prompt_batch_size = len(prompt) | |
| elif prompt_embeds is not None: | |
| prompt_batch_size = prompt_embeds.shape[0] | |
| if image_batch_size != 1 and image_batch_size != prompt_batch_size: | |
| raise ValueError( | |
| f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" | |
| ) | |
| # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image | |
| def prepare_image( | |
| self, | |
| image, | |
| width, | |
| height, | |
| batch_size, | |
| num_images_per_prompt, | |
| device, | |
| dtype, | |
| do_classifier_free_guidance=False, | |
| ): | |
| image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) | |
| image_batch_size = image.shape[0] | |
| if image_batch_size == 1: | |
| repeat_by = batch_size | |
| else: | |
| # image batch size is the same as prompt batch size | |
| repeat_by = num_images_per_prompt | |
| image = image.repeat_interleave(repeat_by, dim=0) | |
| image = image.to(device=device, dtype=dtype) | |
| return image | |
| def init_latents(self, latents, generator, timestep): | |
| noise = torch.randn(latents.shape, generator=generator, device=self.vae.device, dtype=self.vae.dtype, layout=torch.strided) | |
| bsz = latents.shape[0] | |
| print(f"init latent at {timestep}") | |
| timestep = torch.tensor([timestep]*bsz, device=self.vae.device) | |
| # Note that the latents will be scaled aleady by scheduler.add_noise | |
| latents = self.scheduler.add_noise(latents, noise, timestep) | |
| return latents | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| int(height) // self.vae_scale_factor, | |
| int(width) // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids | |
| def _get_add_time_ids( | |
| self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None | |
| ): | |
| add_time_ids = list(original_size + crops_coords_top_left + target_size) | |
| passed_add_embed_dim = ( | |
| self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim | |
| ) | |
| expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features | |
| if expected_add_embed_dim != passed_add_embed_dim: | |
| raise ValueError( | |
| f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | |
| ) | |
| add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | |
| return add_time_ids | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae | |
| def upcast_vae(self): | |
| dtype = self.vae.dtype | |
| self.vae.to(dtype=torch.float32) | |
| use_torch_2_0_or_xformers = isinstance( | |
| self.vae.decoder.mid_block.attentions[0].processor, | |
| ( | |
| AttnProcessor2_0, | |
| XFormersAttnProcessor, | |
| LoRAXFormersAttnProcessor, | |
| LoRAAttnProcessor2_0, | |
| ), | |
| ) | |
| # if xformers or torch_2_0 is used attention block does not need | |
| # to be in float32 which can save lots of memory | |
| if use_torch_2_0_or_xformers: | |
| self.vae.post_quant_conv.to(dtype) | |
| self.vae.decoder.conv_in.to(dtype) | |
| self.vae.decoder.mid_block.to(dtype) | |
| # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding | |
| def get_guidance_scale_embedding( | |
| self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 | |
| ) -> torch.FloatTensor: | |
| """ | |
| See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
| Args: | |
| w (`torch.Tensor`): | |
| Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. | |
| embedding_dim (`int`, *optional*, defaults to 512): | |
| Dimension of the embeddings to generate. | |
| dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): | |
| Data type of the generated embeddings. | |
| Returns: | |
| `torch.FloatTensor`: Embedding vectors with shape `(len(w), embedding_dim)`. | |
| """ | |
| assert len(w.shape) == 1 | |
| w = w * 1000.0 | |
| half_dim = embedding_dim // 2 | |
| emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | |
| emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
| emb = w.to(dtype)[:, None] * emb[None, :] | |
| emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
| if embedding_dim % 2 == 1: # zero pad | |
| emb = torch.nn.functional.pad(emb, (0, 1)) | |
| assert emb.shape == (w.shape[0], embedding_dim) | |
| return emb | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def guidance_rescale(self): | |
| return self._guidance_rescale | |
| def clip_skip(self): | |
| return self._clip_skip | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None | |
| def cross_attention_kwargs(self): | |
| return self._cross_attention_kwargs | |
| def denoising_end(self): | |
| return self._denoising_end | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| image: PipelineImageInput = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 30, | |
| timesteps: List[int] = None, | |
| denoising_end: Optional[float] = None, | |
| guidance_scale: float = 7.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| save_preview_row: bool = False, | |
| init_latents_with_lq: bool = True, | |
| multistep_restore: bool = False, | |
| adastep_restore: bool = False, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| controlnet_conditioning_scale: float = 1.0, | |
| control_guidance_start: float = 0.0, | |
| control_guidance_end: float = 1.0, | |
| preview_start: float = 0.0, | |
| preview_end: float = 1.0, | |
| original_size: Tuple[int, int] = None, | |
| crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| target_size: Tuple[int, int] = None, | |
| negative_original_size: Optional[Tuple[int, int]] = None, | |
| negative_crops_coords_top_left: Tuple[int, int] = (0, 0), | |
| negative_target_size: Optional[Tuple[int, int]] = None, | |
| clip_skip: Optional[int] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| previewer_scheduler: KarrasDiffusionSchedulers = None, | |
| reference_latents: Optional[torch.FloatTensor] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| used in both text-encoders. | |
| image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: | |
| `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): | |
| The ControlNet input condition to provide guidance to the `unet` for generation. If the type is | |
| specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be | |
| accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height | |
| and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in | |
| `init`, images must be passed as a list such that each element of the list can be correctly batched for | |
| input to a single ControlNet. | |
| height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The height in pixels of the generated image. Anything below 512 pixels won't work well for | |
| [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | |
| and checkpoints that are not specifically fine-tuned on low resolutions. | |
| width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The width in pixels of the generated image. Anything below 512 pixels won't work well for | |
| [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | |
| and checkpoints that are not specifically fine-tuned on low resolutions. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
| in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
| passed will be used. Must be in descending order. | |
| denoising_end (`float`, *optional*): | |
| When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be | |
| completed before it is intentionally prematurely terminated. As a result, the returned sample will | |
| still retain a substantial amount of noise as determined by the discrete timesteps selected by the | |
| scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a | |
| "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image | |
| Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) | |
| guidance_scale (`float`, *optional*, defaults to 5.0): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| negative_prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2` | |
| and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, text embeddings are generated from the `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
| not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
| not provided, pooled text embeddings are generated from `prompt` input argument. | |
| negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt | |
| weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input | |
| argument. | |
| ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | |
| ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*): | |
| Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of | |
| IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should | |
| contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not | |
| provided, embeddings are computed from the `ip_adapter_image` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
| [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): | |
| The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added | |
| to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set | |
| the corresponding scale as a list. | |
| control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): | |
| The percentage of total steps at which the ControlNet starts applying. | |
| control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): | |
| The percentage of total steps at which the ControlNet stops applying. | |
| original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
| If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. | |
| `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as | |
| explained in section 2.2 of | |
| [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | |
| `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position | |
| `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting | |
| `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of | |
| [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
| For most cases, `target_size` should be set to the desired height and width of the generated image. If | |
| not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in | |
| section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
| To negatively condition the generation process based on a specific image resolution. Part of SDXL's | |
| micro-conditioning as explained in section 2.2 of | |
| [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | |
| information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | |
| negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | |
| To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's | |
| micro-conditioning as explained in section 2.2 of | |
| [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | |
| information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | |
| negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
| To negatively condition the generation process based on a target image resolution. It should be as same | |
| as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of | |
| [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | |
| information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned containing the output images. | |
| """ | |
| callback = kwargs.pop("callback", None) | |
| callback_steps = kwargs.pop("callback_steps", None) | |
| if callback is not None: | |
| deprecate( | |
| "callback", | |
| "1.0.0", | |
| "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
| ) | |
| if callback_steps is not None: | |
| deprecate( | |
| "callback_steps", | |
| "1.0.0", | |
| "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
| ) | |
| aggregator = self.aggregator._orig_mod if is_compiled_module(self.aggregator) else self.aggregator | |
| if not isinstance(ip_adapter_image, list): | |
| ip_adapter_image = [ip_adapter_image] if ip_adapter_image is not None else [image] | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| image, | |
| callback_steps, | |
| negative_prompt, | |
| negative_prompt_2, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| negative_pooled_prompt_embeds, | |
| controlnet_conditioning_scale, | |
| control_guidance_start, | |
| control_guidance_end, | |
| callback_on_step_end_tensor_inputs, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._guidance_rescale = guidance_rescale | |
| self._clip_skip = clip_skip | |
| self._cross_attention_kwargs = cross_attention_kwargs | |
| self._denoising_end = denoising_end | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| if not isinstance(image, PIL.Image.Image): | |
| batch_size = len(image) | |
| else: | |
| batch_size = 1 | |
| prompt = [prompt] * batch_size | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| assert batch_size == len(image) or (isinstance(image, PIL.Image.Image) or len(image) == 1) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| assert batch_size == len(image) or (isinstance(image, PIL.Image.Image) or len(image) == 1) | |
| device = self._execution_device | |
| # 3.1 Encode input prompt | |
| text_encoder_lora_scale = ( | |
| self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
| ) | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| clip_skip=self.clip_skip, | |
| ) | |
| # 3.2 Encode ip_adapter_image | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| self.do_classifier_free_guidance, | |
| ) | |
| # 4. Prepare image | |
| image = self.prepare_image( | |
| image=image, | |
| width=width, | |
| height=height, | |
| batch_size=batch_size * num_images_per_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| dtype=aggregator.dtype, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| ) | |
| height, width = image.shape[-2:] | |
| if image.shape[1] != 4: | |
| needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
| if needs_upcasting: | |
| image = image.float() | |
| self.vae.to(dtype=torch.float32) | |
| image = self.vae.encode(image).latent_dist.sample() | |
| image = image * self.vae.config.scaling_factor | |
| if needs_upcasting: | |
| self.vae.to(dtype=torch.float16) | |
| image = image.to(dtype=torch.float16) | |
| else: | |
| height = int(height * self.vae_scale_factor) | |
| width = int(width * self.vae_scale_factor) | |
| # 5. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
| # 6. Prepare latent variables | |
| if init_latents_with_lq: | |
| latents = self.init_latents(image, generator, timesteps[0]) | |
| else: | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6.5 Optionally get Guidance Scale Embedding | |
| timestep_cond = None | |
| if self.unet.config.time_cond_proj_dim is not None: | |
| guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | |
| timestep_cond = self.get_guidance_scale_embedding( | |
| guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
| ).to(device=device, dtype=latents.dtype) | |
| # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7.1 Create tensor stating which controlnets to keep | |
| controlnet_keep = [] | |
| previewing = [] | |
| for i in range(len(timesteps)): | |
| keeps = 1.0 - float(i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end) | |
| controlnet_keep.append(keeps) | |
| use_preview = 1.0 - float(i / len(timesteps) < preview_start or (i + 1) / len(timesteps) > preview_end) | |
| previewing.append(use_preview) | |
| if isinstance(controlnet_conditioning_scale, list): | |
| assert len(controlnet_conditioning_scale) == len(timesteps), f"{len(controlnet_conditioning_scale)} controlnet scales do not match number of sampling steps {len(timesteps)}" | |
| else: | |
| controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet_keep) | |
| # 7.2 Prepare added time ids & embeddings | |
| original_size = original_size or (height, width) | |
| target_size = target_size or (height, width) | |
| add_text_embeds = pooled_prompt_embeds | |
| if self.text_encoder_2 is None: | |
| text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) | |
| else: | |
| text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | |
| add_time_ids = self._get_add_time_ids( | |
| original_size, | |
| crops_coords_top_left, | |
| target_size, | |
| dtype=prompt_embeds.dtype, | |
| text_encoder_projection_dim=text_encoder_projection_dim, | |
| ) | |
| if negative_original_size is not None and negative_target_size is not None: | |
| negative_add_time_ids = self._get_add_time_ids( | |
| negative_original_size, | |
| negative_crops_coords_top_left, | |
| negative_target_size, | |
| dtype=prompt_embeds.dtype, | |
| text_encoder_projection_dim=text_encoder_projection_dim, | |
| ) | |
| else: | |
| negative_add_time_ids = add_time_ids | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | |
| add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) | |
| image = torch.cat([image] * 2, dim=0) | |
| prompt_embeds = prompt_embeds.to(device) | |
| add_text_embeds = add_text_embeds.to(device) | |
| add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | |
| # 8. Denoising loop | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| # 8.1 Apply denoising_end | |
| if ( | |
| self.denoising_end is not None | |
| and isinstance(self.denoising_end, float) | |
| and self.denoising_end > 0 | |
| and self.denoising_end < 1 | |
| ): | |
| discrete_timestep_cutoff = int( | |
| round( | |
| self.scheduler.config.num_train_timesteps | |
| - (self.denoising_end * self.scheduler.config.num_train_timesteps) | |
| ) | |
| ) | |
| num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) | |
| timesteps = timesteps[:num_inference_steps] | |
| is_unet_compiled = is_compiled_module(self.unet) | |
| is_aggregator_compiled = is_compiled_module(self.aggregator) | |
| is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") | |
| previewer_mean = torch.zeros_like(latents) | |
| unet_mean = torch.zeros_like(latents) | |
| preview_factor = torch.ones( | |
| (latents.shape[0], *((1,) * (len(latents.shape) - 1))), dtype=latents.dtype, device=latents.device | |
| ) | |
| self._num_timesteps = len(timesteps) | |
| preview_row = [] | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # Relevant thread: | |
| # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428 | |
| if (is_unet_compiled and is_aggregator_compiled) and is_torch_higher_equal_2_1: | |
| torch._inductor.cudagraph_mark_step_begin() | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| prev_t = t | |
| unet_model_input = latent_model_input | |
| added_cond_kwargs = { | |
| "text_embeds": add_text_embeds, | |
| "time_ids": add_time_ids, | |
| "image_embeds": image_embeds | |
| } | |
| aggregator_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
| # prepare time_embeds in advance as adapter input | |
| cross_attention_t_emb = self.unet.get_time_embed(sample=latent_model_input, timestep=t) | |
| cross_attention_emb = self.unet.time_embedding(cross_attention_t_emb, timestep_cond) | |
| cross_attention_aug_emb = None | |
| cross_attention_aug_emb = self.unet.get_aug_embed( | |
| emb=cross_attention_emb, | |
| encoder_hidden_states=prompt_embeds, | |
| added_cond_kwargs=added_cond_kwargs | |
| ) | |
| cross_attention_emb = cross_attention_emb + cross_attention_aug_emb if cross_attention_aug_emb is not None else cross_attention_emb | |
| if self.unet.time_embed_act is not None: | |
| cross_attention_emb = self.unet.time_embed_act(cross_attention_emb) | |
| current_cross_attention_kwargs = {"temb": cross_attention_emb} | |
| if cross_attention_kwargs is not None: | |
| for k,v in cross_attention_kwargs.items(): | |
| current_cross_attention_kwargs[k] = v | |
| self._cross_attention_kwargs = current_cross_attention_kwargs | |
| # adaptive restoration factors | |
| adaRes_scale = preview_factor.to(latent_model_input.dtype).clamp(0.0, controlnet_conditioning_scale[i]) | |
| cond_scale = adaRes_scale * controlnet_keep[i] | |
| cond_scale = torch.cat([cond_scale] * 2) if self.do_classifier_free_guidance else cond_scale | |
| if (cond_scale>0.1).sum().item() > 0: | |
| if previewing[i] > 0: | |
| # preview with LCM | |
| self.unet.enable_adapters() | |
| preview_noise = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep_cond=timestep_cond, | |
| cross_attention_kwargs=self.cross_attention_kwargs, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| preview_latent = previewer_scheduler.step( | |
| preview_noise, | |
| t.to(dtype=torch.int64), | |
| # torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents, | |
| latent_model_input, # scaled latents here for compatibility | |
| return_dict=False | |
| )[0] | |
| self.unet.disable_adapters() | |
| if self.do_classifier_free_guidance: | |
| preview_row.append(preview_latent.chunk(2)[1].to('cpu')) | |
| else: | |
| preview_row.append(preview_latent.to('cpu')) | |
| # Prepare 2nd order step. | |
| if multistep_restore and i+1 < len(timesteps): | |
| noise_preview = preview_noise.chunk(2)[1] if self.do_classifier_free_guidance else preview_noise | |
| first_step = self.scheduler.step( | |
| noise_preview, t, latents, | |
| **extra_step_kwargs, return_dict=True, step_forward=False | |
| ) | |
| prev_t = timesteps[i + 1] | |
| unet_model_input = torch.cat([first_step.prev_sample] * 2) if self.do_classifier_free_guidance else first_step.prev_sample | |
| unet_model_input = self.scheduler.scale_model_input(unet_model_input, prev_t, heun_step=True) | |
| elif reference_latents is not None: | |
| preview_latent = torch.cat([reference_latents] * 2) if self.do_classifier_free_guidance else reference_latents | |
| else: | |
| preview_latent = image | |
| # Add fresh noise | |
| # preview_noise = torch.randn_like(preview_latent) | |
| # preview_latent = self.scheduler.add_noise(preview_latent, preview_noise, t) | |
| preview_latent=preview_latent.to(dtype=next(aggregator.parameters()).dtype) | |
| # Aggregator inference | |
| down_block_res_samples, mid_block_res_sample = aggregator( | |
| image, | |
| prev_t, | |
| encoder_hidden_states=prompt_embeds, | |
| controlnet_cond=preview_latent, | |
| # conditioning_scale=cond_scale, | |
| added_cond_kwargs=aggregator_added_cond_kwargs, | |
| return_dict=False, | |
| ) | |
| # aggregator features scaling | |
| down_block_res_samples = [sample*cond_scale for sample in down_block_res_samples] | |
| mid_block_res_sample = mid_block_res_sample*cond_scale | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| unet_model_input, | |
| prev_t, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep_cond=timestep_cond, | |
| cross_attention_kwargs=self.cross_attention_kwargs, | |
| down_block_additional_residuals=down_block_res_samples, | |
| mid_block_additional_residual=mid_block_res_sample, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: | |
| # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
| noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| unet_step = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=True) | |
| latents = unet_step.prev_sample | |
| # Update adaRes factors | |
| unet_pred_latent = unet_step.pred_original_sample | |
| # Adaptive restoration. | |
| if adastep_restore: | |
| pred_x0_l2 = ((preview_latent[latents.shape[0]:].float()-unet_pred_latent.float())).pow(2).sum(dim=(1,2,3)) | |
| previewer_l2 = ((preview_latent[latents.shape[0]:].float()-previewer_mean.float())).pow(2).sum(dim=(1,2,3)) | |
| # unet_l2 = ((unet_pred_latent.float()-unet_mean.float())).pow(2).sum(dim=(1,2,3)).sqrt() | |
| # l2_error = (((preview_latent[latents.shape[0]:]-previewer_mean) - (unet_pred_latent-unet_mean))).pow(2).mean(dim=(1,2,3)) | |
| # preview_error = torch.nn.functional.cosine_similarity(preview_latent[latents.shape[0]:].reshape(latents.shape[0], -1), unet_pred_latent.reshape(latents.shape[0],-1)) | |
| previewer_mean = preview_latent[latents.shape[0]:] | |
| unet_mean = unet_pred_latent | |
| preview_factor = (pred_x0_l2 / previewer_l2).reshape(-1, 1, 1, 1) | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| if not output_type == "latent": | |
| # make sure the VAE is in float32 mode, as it overflows in float16 | |
| needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
| if needs_upcasting: | |
| self.upcast_vae() | |
| latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
| # unscale/denormalize the latents | |
| # denormalize with the mean and std if available and not None | |
| has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None | |
| has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None | |
| if has_latents_mean and has_latents_std: | |
| latents_mean = ( | |
| torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) | |
| ) | |
| latents_std = ( | |
| torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) | |
| ) | |
| latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean | |
| else: | |
| latents = latents / self.vae.config.scaling_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| # cast back to fp16 if needed | |
| if needs_upcasting: | |
| self.vae.to(dtype=torch.float16) | |
| else: | |
| image = latents | |
| if not output_type == "latent": | |
| # apply watermark if available | |
| if self.watermark is not None: | |
| image = self.watermark.apply_watermark(image) | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| if save_preview_row: | |
| preview_image_row = [] | |
| if needs_upcasting: | |
| self.upcast_vae() | |
| for preview_latents in preview_row: | |
| preview_latents = preview_latents.to(device=self.device, dtype=next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
| if has_latents_mean and has_latents_std: | |
| latents_mean = ( | |
| torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(preview_latents.device, preview_latents.dtype) | |
| ) | |
| latents_std = ( | |
| torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(preview_latents.device, preview_latents.dtype) | |
| ) | |
| preview_latents = preview_latents * latents_std / self.vae.config.scaling_factor + latents_mean | |
| else: | |
| preview_latents = preview_latents / self.vae.config.scaling_factor | |
| preview_image = self.vae.decode(preview_latents, return_dict=False)[0] | |
| preview_image = self.image_processor.postprocess(preview_image, output_type=output_type) | |
| preview_image_row.append(preview_image) | |
| # cast back to fp16 if needed | |
| if needs_upcasting: | |
| self.vae.to(dtype=torch.float16) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| if save_preview_row: | |
| return (image, preview_image_row) | |
| return (image,) | |
| return StableDiffusionXLPipelineOutput(images=image) | |