InstantID-2V / app.py
fffiloni's picture
Update app.py
179183d verified
import gradio as gr
from gradio_client import Client
import numpy as np
import os
import random
hf_token = os.environ.get("HF_TKN")
# global variable
MAX_SEED = np.iinfo(np.int32).max
from style_template import styles
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def get_instantID(portrait_in, condition_pose, controlnet, prompt, style):
negative_prompt = "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green"
seed = 42
seed = random.randint(0, MAX_SEED)
client = Client("https://instantx-instantid.hf.space/")
result = client.predict(
portrait_in, # filepath in 'Upload a photo of your face' Image component
condition_pose, # filepath in 'Upload a reference pose image (Optional)' Image component
prompt, # str in 'Prompt' Textbox component
negative_prompt, # str in 'Negative Prompt' Textbox component
style, # Literal['(No style)', 'Spring Festival', 'Watercolor', 'Film Noir', 'Neon', 'Jungle', 'Mars', 'Vibrant Color', 'Snow', 'Line art'] in 'Style template' Dropdown component
5, # float (numeric value between 1 and 100) in 'Number of sample steps' Slider component
0.8, # float (numeric value between 0 and 1.5) in 'IdentityNet strength (for fidelity)' Slider component
0.8, # float (numeric value between 0 and 1.5) in 'Image adapter strength (for detail)' Slider component
0.4, # float (numeric value between 0 and 1.5) in 'Pose strength' Slider component
0.4, # float (numeric value between 0 and 1.5) in 'Canny strength' Slider component
0.4, # float (numeric value between 0 and 1.5) in 'Depth strength' Slider component
controlnet, # List[Literal['pose', 'canny', 'depth']] in 'Controlnet' Checkboxgroup component
1.5, # float (numeric value between 0.1 and 20.0) in 'Guidance scale' Slider component
seed, # float (numeric value between 0 and 2147483647) in 'Seed' Slider component
"EulerDiscreteScheduler", # Literal['DEISMultistepScheduler', 'HeunDiscreteScheduler', 'EulerDiscreteScheduler', 'DPMSolverMultistepScheduler', 'DPMSolverMultistepScheduler-Karras', 'DPMSolverMultistepScheduler-Karras-SDE'] in 'Schedulers' Dropdown component
True, # bool in 'Enable Fast Inference with LCM' Checkbox component
True, # bool in 'Enhance non-face region' Checkbox component
api_name="/generate_image"
)
print(result)
return result[0]
def get_video_i2vgen(image_in, prompt):
client = Client("https://modelscope-i2vgen-xl.hf.space/")
result = client.predict(
image_in,
prompt,
fn_index=1
#api_name="/image_to_video"
)
print(result)
return result
def get_video_svd(image_in):
from gradio_client import Client
client = Client("https://multimodalart-stable-video-diffusion.hf.space/")
result = client.predict(
image_in, # filepath in 'Upload your image' Image component
0, # float (numeric value between 0 and 9223372036854775807) in 'Seed' Slider component
True, # bool in 'Randomize seed' Checkbox component
127, # float (numeric value between 1 and 255) in 'Motion bucket id' Slider component
6, # float (numeric value between 5 and 30) in 'Frames per second' Slider component
api_name="/video"
)
print(result)
return result[0]["video"]
def load_sample_shot(camera_shot):
if camera_shot == "close-up":
conditional_pose = "camera_shots/close_up_shot.jpeg"
elif camera_shot == "medium close-up":
conditional_pose = "camera_shots/medium_close_up.jpeg"
elif camera_shot == "medium shot":
conditional_pose = "camera_shots/medium_shot.png"
elif camera_shot == "cowboy shot":
conditional_pose = "camera_shots/cowboy_shot.jpeg"
elif camera_shot == "medium full shot":
conditional_pose = "camera_shots/medium_full_shot.png"
elif camera_shot == "full shot":
conditional_pose = "camera_shots/full_shot.jpeg"
elif camera_shot == "custom":
conditional_pose = None
return conditional_pose
def use_custom_cond():
return "custom"
def get_short_caption(image_in):
client = Client("https://vikhyatk-moondream1.hf.space/")
result = client.predict(
image_in, # filepath in 'image' Image component
"Describe what is happening in one sentence", # str in 'Question' Textbox component
api_name="/answer_question"
)
print(result)
return result
def infer(image_in, camera_shot, conditional_pose, controlnet_selection, prompt, style, chosen_model):
if camera_shot == "custom":
if conditional_pose != None:
conditional_pose = conditional_pose
else :
raise gr.Error("No custom conditional shot found !")
iid_img = get_instantID(image_in, conditional_pose, controlnet_selection, prompt, style)
#short_cap = get_short_caption(iid_img)
if chosen_model == "i2vgen-xl" :
video_res = get_video_i2vgen(iid_img, prompt)
elif chosen_model == "stable-video" :
video_res = get_video_svd(image_in)
print(video_res)
return video_res
css = """
#col-container{
margin: 0 auto;
max-width: 1080px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""
<h2 style="text-align: center;">
InstantID-2V
</h2>
<p style="text-align: center;">
Generate alive camera shot from input face
</p>
""")
with gr.Row():
with gr.Column():
face_in = gr.Image(type="filepath", label="Face to copy", value="monalisa.png")
with gr.Column():
with gr.Group():
with gr.Row():
camera_shot = gr.Dropdown(
label = "Camera Shot",
info = "Use standard camera shots vocabulary, or drop your custom shot as conditional pose (1280*720 ratio is recommended)",
choices = [
"custom", "close-up", "medium close-up", "medium shot", "cowboy shot", "medium full shot", "full shot"
],
value = "custom"
)
style = gr.Dropdown(label="Style template", info="InstantID legacy templates", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
condition_shot = gr.Image(type="filepath", label="Custom conditional shot (Important) [1280*720 recommended]")
controlnet_selection = gr.CheckboxGroup(
["pose", "canny", "depth"], label="Controlnet", value=["pose"],
info="Use pose for skeleton inference, canny for edge detection, and depth for depth map estimation. You can try all three to control the generation process"
)
prompt = gr.Textbox(label="Short Prompt (keeping it short is better)")
chosen_model = gr.Radio(label="Choose a model", choices=["i2vgen-xl", "stable-video"], value="i2vgen-xl", interactive=False, visible=False)
with gr.Column():
submit_btn = gr.Button("Submit")
video_out = gr.Video()
camera_shot.change(
fn = load_sample_shot,
inputs = camera_shot,
outputs = condition_shot,
queue=False
)
condition_shot.clear(
fn = use_custom_cond,
inputs = None,
outputs = camera_shot,
queue=False,
)
submit_btn.click(
fn = infer,
inputs = [
face_in,
camera_shot,
condition_shot,
controlnet_selection,
prompt,
style,
chosen_model
],
outputs = [
video_out
]
)
demo.queue(max_size=3).launch(share=False, show_error=True, show_api=False)