ControlVideo / predict.py
Sylvain Filoni
init
8502051
raw
history blame
6.12 kB
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import os
import numpy as np
import argparse
import imageio
import torch
from einops import rearrange
from diffusers import DDIMScheduler, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer
import controlnet_aux
from controlnet_aux import OpenposeDetector, CannyDetector, MidasDetector
from models.pipeline_controlvideo import ControlVideoPipeline
from models.util import save_videos_grid, read_video, get_annotation
from models.unet import UNet3DConditionModel
from models.controlnet import ControlNetModel3D
from models.RIFE.IFNet_HDv3 import IFNet
from cog import BasePredictor, Input, Path
sd_path = "checkpoints/stable-diffusion-v1-5"
inter_path = "checkpoints/flownet.pkl"
controlnet_dict = {
"pose": "checkpoints/sd-controlnet-openpose",
"depth": "checkpoints/sd-controlnet-depth",
"canny": "checkpoints/sd-controlnet-canny",
}
controlnet_parser_dict = {
"pose": OpenposeDetector,
"depth": MidasDetector,
"canny": CannyDetector,
}
POS_PROMPT = " ,best quality, extremely detailed, HD, ultra-realistic, 8K, HQ, masterpiece, trending on artstation, art, smooth"
NEG_PROMPT = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly, unrealistic"
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
self.tokenizer = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(
sd_path, subfolder="text_encoder"
).to(dtype=torch.float16)
self.vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae").to(
dtype=torch.float16
)
self.unet = UNet3DConditionModel.from_pretrained_2d(
sd_path, subfolder="unet"
).to(dtype=torch.float16)
self.interpolater = IFNet(ckpt_path=inter_path).to(dtype=torch.float16)
self.scheduler = DDIMScheduler.from_pretrained(sd_path, subfolder="scheduler")
self.controlnet = {
k: ControlNetModel3D.from_pretrained_2d(controlnet_dict[k]).to(
dtype=torch.float16
)
for k in ["depth", "canny", "pose"]
}
self.annotator = {k: controlnet_parser_dict[k]() for k in ["depth", "canny"]}
self.annotator["pose"] = controlnet_parser_dict["pose"].from_pretrained(
"lllyasviel/ControlNet", cache_dir="checkpoints"
)
def predict(
self,
prompt: str = Input(
description="Text description of target video",
default="A striking mallard floats effortlessly on the sparkling pond.",
),
video_path: Path = Input(description="source video"),
condition: str = Input(
default="depth",
choices=["depth", "canny", "pose"],
description="Condition of structure sequence",
),
video_length: int = Input(
default=15, description="Length of synthesized video"
),
smoother_steps: str = Input(
default="19, 20",
description="Timesteps at which using interleaved-frame smoother, separate with comma",
),
is_long_video: bool = Input(
default=False,
description="Whether to use hierarchical sampler to produce long video",
),
num_inference_steps: int = Input(
description="Number of denoising steps", default=50
),
guidance_scale: float = Input(
description="Scale for classifier-free guidance", ge=1, le=20, default=12.5
),
seed: str = Input(
default=None, description="Random seed. Leave blank to randomize the seed"
),
) -> Path:
"""Run a single prediction on the model"""
if seed is None:
seed = int.from_bytes(os.urandom(2), "big")
else:
seed = int(seed)
print(f"Using seed: {seed}")
generator = torch.Generator(device="cuda")
generator.manual_seed(seed)
pipe = ControlVideoPipeline(
vae=self.vae,
text_encoder=self.text_encoder,
tokenizer=self.tokenizer,
unet=self.unet,
controlnet=self.controlnet[condition],
interpolater=self.interpolater,
scheduler=self.scheduler,
)
pipe.enable_vae_slicing()
pipe.enable_xformers_memory_efficient_attention()
pipe.to("cuda")
# Step 1. Read a video
video = read_video(video_path=str(video_path), video_length=video_length)
# Step 2. Parse a video to conditional frames
pil_annotation = get_annotation(video, self.annotator[condition])
# Step 3. inference
smoother_steps = [int(s) for s in smoother_steps.split(",")]
if is_long_video:
window_size = int(np.sqrt(video_length))
sample = pipe.generate_long_video(
prompt + POS_PROMPT,
video_length=video_length,
frames=pil_annotation,
num_inference_steps=num_inference_steps,
smooth_steps=smoother_steps,
window_size=window_size,
generator=generator,
guidance_scale=guidance_scale,
negative_prompt=NEG_PROMPT,
).videos
else:
sample = pipe(
prompt + POS_PROMPT,
video_length=video_length,
frames=pil_annotation,
num_inference_steps=num_inference_steps,
smooth_steps=smoother_steps,
generator=generator,
guidance_scale=guidance_scale,
negative_prompt=NEG_PROMPT,
).videos
out_path = "/tmp/out.mp4"
save_videos_grid(sample, out_path)
del pipe
torch.cuda.empty_cache()
return Path(out_path)