Spaces:
Paused
Paused
import gradio as gr | |
import os | |
import shutil | |
import subprocess | |
from share_btn import community_icon_html, loading_icon_html, share_js | |
import cv2 | |
import numpy as np | |
from moviepy.editor import VideoFileClip, concatenate_videoclips | |
import math | |
from huggingface_hub import snapshot_download | |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1' | |
model_ids = [ | |
'runwayml/stable-diffusion-v1-5', | |
'lllyasviel/sd-controlnet-depth', | |
'lllyasviel/sd-controlnet-canny', | |
'lllyasviel/sd-controlnet-openpose', | |
] | |
for model_id in model_ids: | |
model_name = model_id.split('/')[-1] | |
snapshot_download(model_id, local_dir=f'checkpoints/{model_name}') | |
def load_model(model_id): | |
local_dir = f'checkpoints/stable-diffusion-v1-5' | |
# Check if the directory exists | |
if os.path.exists(local_dir): | |
# Delete the directory if it exists | |
shutil.rmtree(local_dir) | |
model_name = model_id.split('/')[-1] | |
snapshot_download(model_id, local_dir=f'checkpoints/{model_name}') | |
os.rename(f'checkpoints/{model_name}', f'checkpoints/stable-diffusion-v1-5') | |
return "model loaded" | |
def get_frame_count(filepath): | |
if filepath is not None: | |
video = cv2.VideoCapture(filepath) | |
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) | |
video.release() | |
# LIMITS | |
if frame_count > 24 : | |
frame_count = 24 # limit to 24 frames to avoid cuDNN errors | |
return gr.update(maximum=frame_count) | |
else: | |
return gr.update(value=1, maximum=12 ) | |
def get_video_dimension(filepath): | |
video = cv2.VideoCapture(filepath) | |
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fps = int(video.get(cv2.CAP_PROP_FPS)) | |
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) | |
video.release() | |
return width, height, fps, frame_count | |
def resize_video(input_vid, output_vid, width, height, fps): | |
print(f"RESIZING ...") | |
# Open the input video file | |
video = cv2.VideoCapture(input_vid) | |
# Get the original video's width and height | |
original_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
original_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
# Create a VideoWriter object to write the resized video | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for the output video | |
output_video = cv2.VideoWriter(output_vid, fourcc, fps, (width, height)) | |
while True: | |
# Read a frame from the input video | |
ret, frame = video.read() | |
if not ret: | |
break | |
# Resize the frame to the desired dimensions | |
resized_frame = cv2.resize(frame, (width, height)) | |
# Write the resized frame to the output video file | |
output_video.write(resized_frame) | |
# Release the video objects | |
video.release() | |
output_video.release() | |
print(f"RESIZE VIDEO DONE!") | |
return output_vid | |
def make_nearest_multiple_of_32(number): | |
remainder = number % 32 | |
if remainder <= 16: | |
number -= remainder | |
else: | |
number += 32 - remainder | |
return number | |
def change_video_fps(input_path): | |
print(f"CHANGING FIANL OUTPUT FPS") | |
cap = cv2.VideoCapture(input_path) | |
# Check if the final file already exists | |
if os.path.exists('output_video.mp4'): | |
# Delete the existing file | |
os.remove('output_video.mp4') | |
output_path = 'output_video.mp4' | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
output_fps = 12 | |
output_size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))) | |
out = cv2.VideoWriter(output_path, fourcc, output_fps, output_size) | |
frame_count = 0 | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
# Write the current frame to the output video multiple times to increase the frame rate | |
for _ in range(output_fps // 8): | |
out.write(frame) | |
frame_count += 1 | |
print(f'Processed frame {frame_count}') | |
cap.release() | |
out.release() | |
cv2.destroyAllWindows() | |
return 'output_video.mp4' | |
def run_inference(prompt, video_path, condition, video_length, seed): | |
seed = math.floor(seed) | |
o_width = get_video_dimension(video_path)[0] | |
o_height = get_video_dimension(video_path)[1] | |
# Prepare dimensions | |
if o_width > 512 : | |
# Calculate the new height while maintaining the aspect ratio | |
n_height = int(o_height / o_width * 512) | |
n_width = 512 | |
# Make sure new dimensions are multipe of 32 | |
r_width = make_nearest_multiple_of_32(n_width) | |
r_height = make_nearest_multiple_of_32(n_height) | |
print(f"multiple of 32 sizes : {r_width}x{r_height}") | |
# Get FPS of original video input | |
original_fps = get_video_dimension(video_path)[2] | |
if original_fps > 12 : | |
print(f"FPS is too high: {original_fps}") | |
target_fps = 12 | |
print(f"NEW INPUT FPS: {target_fps}, NEW LENGTH: {video_length}") | |
# Check if the resized file already exists | |
if os.path.exists('resized.mp4'): | |
# Delete the existing file | |
os.remove('resized.mp4') | |
resized = resize_video(video_path, 'resized.mp4', r_width, r_height, target_fps) | |
resized_video_fcount = get_video_dimension(resized)[3] | |
print(f"RESIZED VIDEO FRAME COUNT: {resized_video_fcount}") | |
# Make sure new total frame count is enough to handle chosen video length | |
if video_length > resized_video_fcount : | |
video_length = resized_video_fcount | |
# video_length = int((target_fps * video_length) / original_fps) | |
output_path = 'output/' | |
os.makedirs(output_path, exist_ok=True) | |
# Check if the file already exists | |
if os.path.exists(os.path.join(output_path, f"result.mp4")): | |
# Delete the existing file | |
os.remove(os.path.join(output_path, f"result.mp4")) | |
print(f"RUNNING INFERENCE ...") | |
if video_length > 12: | |
command = f"python inference.py --prompt '{prompt}' --inference_steps 50 --condition '{condition}' --video_path '{resized}' --output_path '{output_path}' --temp_chunk_path 'result' --width {r_width} --height {r_height} --fps {target_fps} --seed {seed} --video_length {video_length} --smoother_steps 19 20 --is_long_video" | |
else: | |
command = f"python inference.py --prompt '{prompt}' --inference_steps 50 --condition '{condition}' --video_path '{resized}' --output_path '{output_path}' --temp_chunk_path 'result' --width {r_width} --height {r_height} --fps {target_fps} --seed {seed} --video_length {video_length} --smoother_steps 19 20" | |
try: | |
subprocess.run(command, shell=True) | |
except cuda.Error as e: | |
return f"CUDA Error: {e}", None | |
except RuntimeError as e: | |
return f"Runtime Error: {e}", None | |
# Construct the video path | |
video_path_output = os.path.join(output_path, f"result.mp4") | |
# Resize to original video input size | |
#o_width = get_video_dimension(video_path)[0] | |
#o_height = get_video_dimension(video_path)[1] | |
#resize_video(video_path_output, 'resized_final.mp4', o_width, o_height, target_fps) | |
# Check generated video FPS | |
gen_fps = get_video_dimension(video_path_output)[2] | |
print(f"GEN VIDEO FPS: {gen_fps}") | |
final = change_video_fps(video_path_output) | |
print(f"FINISHED !") | |
return final, gr.Group.update(visible=True) | |
css=""" | |
#col-container {max-width: 810px; margin-left: auto; margin-right: auto;} | |
.animate-spin { | |
animation: spin 1s linear infinite; | |
} | |
@keyframes spin { | |
from { | |
transform: rotate(0deg); | |
} | |
to { | |
transform: rotate(360deg); | |
} | |
} | |
#share-btn-container { | |
display: flex; | |
padding-left: 0.5rem !important; | |
padding-right: 0.5rem !important; | |
background-color: #000000; | |
justify-content: center; | |
align-items: center; | |
border-radius: 9999px !important; | |
max-width: 13rem; | |
} | |
#share-btn-container:hover { | |
background-color: #060606; | |
} | |
#share-btn { | |
all: initial; | |
color: #ffffff; | |
font-weight: 600; | |
cursor:pointer; | |
font-family: 'IBM Plex Sans', sans-serif; | |
margin-left: 0.5rem !important; | |
padding-top: 0.5rem !important; | |
padding-bottom: 0.5rem !important; | |
right:0; | |
} | |
#share-btn * { | |
all: unset; | |
} | |
#share-btn-container div:nth-child(-n+2){ | |
width: auto !important; | |
min-height: 0px !important; | |
} | |
#share-btn-container .wrap { | |
display: none !important; | |
} | |
#share-btn-container.hidden { | |
display: none!important; | |
} | |
img[src*='#center'] { | |
display: block; | |
margin: auto; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(""" | |
<h1 style="text-align: center;">ControlVideo</h1> | |
<p style="text-align: center;"> Pytorch implementation of "<a href='https://github.com/chenxwh/ControlVideo' target='_blank'>ControlVideo</a>: Training-free Controllable Text-to-Video Generation" </p> | |
[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg#center)](https://huggingface.co/spaces/fffiloni/ControlVideo?duplicate=true) | |
""") | |
with gr.Column(): | |
with gr.Row(): | |
video_path = gr.Video(label="Input video", source="upload", type="filepath", visible=True, elem_id="video-in") | |
with gr.Column(): | |
video_res = gr.Video(label="result", elem_id="video-out") | |
with gr.Group(elem_id="share-btn-container", visible=False) as share_group: | |
community_icon = gr.HTML(community_icon_html) | |
loading_icon = gr.HTML(loading_icon_html) | |
share_button = gr.Button("Share to community", elem_id="share-btn") | |
with gr.Row(): | |
chosen_model = gr.Textbox(label="Custom model (*1.5)", placeholder="E.g: nitrosocke/Ghibli-Diffusion") | |
model_status = gr.Textbox(label="status") | |
load_model_btn = gr.Button("load model (optional)") | |
prompt = gr.Textbox(label="prompt", info="If you loaded a custom model, do not forget to include Prompt trigger", elem_id="prompt-in") | |
with gr.Column(): | |
video_length = gr.Slider(label="Video length", info="How many frames do you want to process ? For demo purpose, max is set to 24", minimum=1, maximum=12, step=1, value=2) | |
with gr.Row(): | |
condition = gr.Dropdown(label="Condition", choices=["depth", "canny", "pose"], value="depth") | |
seed = gr.Number(label="seed", value=42) | |
submit_btn = gr.Button("Submit") | |
gr.Examples( | |
examples=[["Indiana Jones moonwalk in the wild jungle", "./examples/moonwalk.mp4", 'depth', 24, 192837465]], | |
fn=run_inference, | |
inputs=[prompt, | |
video_path, | |
condition, | |
video_length, | |
seed | |
], | |
outputs=[video_res, share_group], | |
cache_examples=False | |
) | |
share_button.click(None, [], [], _js=share_js) | |
load_model_btn.click(fn=load_model, inputs=[chosen_model], outputs=[model_status], queue=False) | |
video_path.change(fn=get_frame_count, | |
inputs=[video_path], | |
outputs=[video_length], | |
queue=False | |
) | |
submit_btn.click(fn=run_inference, | |
inputs=[prompt, | |
video_path, | |
condition, | |
video_length, | |
seed | |
], | |
outputs=[video_res, share_group]) | |
demo.queue(max_size=12).launch() |