|
from __future__ import annotations |
|
import gradio as gr |
|
import os |
|
import cv2 |
|
import numpy as np |
|
from PIL import Image |
|
from moviepy.editor import * |
|
from share_btn import community_icon_html, loading_icon_html, share_js |
|
|
|
import pathlib |
|
import shlex |
|
import subprocess |
|
|
|
if os.getenv('SYSTEM') == 'spaces': |
|
with open('patch') as f: |
|
subprocess.run(shlex.split('patch -p1'), stdin=f, cwd='ControlNet') |
|
|
|
base_url = 'https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/' |
|
|
|
names = [ |
|
'body_pose_model.pth', |
|
'dpt_hybrid-midas-501f0c75.pt', |
|
'hand_pose_model.pth', |
|
'mlsd_large_512_fp32.pth', |
|
'mlsd_tiny_512_fp32.pth', |
|
'network-bsds500.pth', |
|
'upernet_global_small.pth', |
|
] |
|
|
|
for name in names: |
|
command = f'wget https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/{name} -O {name}' |
|
out_path = pathlib.Path(f'ControlNet/annotator/ckpts/{name}') |
|
if out_path.exists(): |
|
continue |
|
subprocess.run(shlex.split(command), cwd='ControlNet/annotator/ckpts/') |
|
|
|
from model import Model |
|
model = Model() |
|
|
|
|
|
def controlnet(i, prompt, control_task, seed_in, ddim_steps, scale): |
|
img= Image.open(i) |
|
np_img = np.array(img) |
|
|
|
a_prompt = "best quality, extremely detailed" |
|
n_prompt = "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality" |
|
num_samples = 1 |
|
image_resolution = 512 |
|
detect_resolution = 512 |
|
eta = 0.0 |
|
low_threshold = 100 |
|
high_threshold = 200 |
|
|
|
if control_task == 'Canny': |
|
result = model.process_canny(np_img, prompt, a_prompt, n_prompt, num_samples, |
|
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta, low_threshold, high_threshold) |
|
elif control_task == 'Depth': |
|
result = model.process_depth(np_img, prompt, a_prompt, n_prompt, num_samples, |
|
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta) |
|
elif control_task == 'Pose': |
|
result = model.process_pose(np_img, prompt, a_prompt, n_prompt, num_samples, |
|
image_resolution, detect_resolution, ddim_steps, scale, seed_in, eta) |
|
|
|
|
|
im = Image.fromarray(result[1]) |
|
im.save("your_file" + str(i) + ".jpeg") |
|
return "your_file" + str(i) + ".jpeg" |
|
|
|
|
|
def get_frames(video_in): |
|
frames = [] |
|
|
|
clip = VideoFileClip(video_in) |
|
|
|
|
|
if clip.fps > 30: |
|
print("vide rate is over 30, resetting to 30") |
|
clip_resized = clip.resize(height=512) |
|
clip_resized.write_videofile("video_resized.mp4", fps=30) |
|
else: |
|
print("video rate is OK") |
|
clip_resized = clip.resize(height=512) |
|
clip_resized.write_videofile("video_resized.mp4", fps=clip.fps) |
|
|
|
print("video resized to 512 height") |
|
|
|
|
|
cap= cv2.VideoCapture("video_resized.mp4") |
|
|
|
fps = cap.get(cv2.CAP_PROP_FPS) |
|
print("video fps: " + str(fps)) |
|
i=0 |
|
while(cap.isOpened()): |
|
ret, frame = cap.read() |
|
if ret == False: |
|
break |
|
cv2.imwrite('kang'+str(i)+'.jpg',frame) |
|
frames.append('kang'+str(i)+'.jpg') |
|
i+=1 |
|
|
|
cap.release() |
|
cv2.destroyAllWindows() |
|
print("broke the video into frames") |
|
|
|
return frames, fps |
|
|
|
|
|
def create_video(frames, fps): |
|
print("building video result") |
|
clip = ImageSequenceClip(frames, fps=fps) |
|
clip.write_videofile("movie.mp4", fps=fps) |
|
|
|
return 'movie.mp4' |
|
|
|
|
|
def infer(prompt,video_in, control_task, seed_in, trim_value, ddim_steps, scale): |
|
print(f""" |
|
βββββββββββββββ |
|
{prompt} |
|
βββββββββββββββ""") |
|
|
|
|
|
break_vid = get_frames(video_in) |
|
frames_list= break_vid[0] |
|
fps = break_vid[1] |
|
n_frame = int(trim_value*fps) |
|
|
|
if n_frame >= len(frames_list): |
|
print("video is shorter than the cut value") |
|
n_frame = len(frames_list) |
|
|
|
|
|
result_frames = [] |
|
print("set stop frames to: " + str(n_frame)) |
|
|
|
for i in frames_list[0:int(n_frame)]: |
|
controlnet_img = controlnet(i, prompt,control_task, seed_in, ddim_steps, scale) |
|
|
|
|
|
|
|
|
|
|
|
result_frames.append(controlnet_img) |
|
print("frame " + i + "/" + str(n_frame) + ": done;") |
|
|
|
final_vid = create_video(result_frames, fps) |
|
print("finished !") |
|
|
|
return final_vid, gr.Group.update(visible=True) |
|
|
|
|
|
title = """ |
|
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> |
|
<div |
|
style=" |
|
display: inline-flex; |
|
align-items: center; |
|
gap: 0.8rem; |
|
font-size: 1.75rem; |
|
" |
|
> |
|
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;"> |
|
ControlNet Video |
|
</h1> |
|
</div> |
|
<p style="margin-bottom: 10px; font-size: 94%"> |
|
Apply ControlNet to a video |
|
</p> |
|
</div> |
|
""" |
|
|
|
article = """ |
|
|
|
<div class="footer"> |
|
<p> |
|
Follow <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a> for future updates π€ |
|
</p> |
|
</div> |
|
<div id="may-like-container" style="display: flex;justify-content: center;flex-direction: column;align-items: center;margin-bottom: 30px;"> |
|
<p>You may also like: </p> |
|
<div id="may-like-content" style="display:flex;flex-wrap: wrap;align-items:center;height:20px;"> |
|
|
|
<svg height="20" width="148" style="margin-left:4px;margin-bottom: 6px;"> |
|
<a href="https://huggingface.co/spaces/fffiloni/Pix2Pix-Video" target="_blank"> |
|
<image href="https://img.shields.io/badge/π€ Spaces-Pix2Pix_Video-blue" src="https://img.shields.io/badge/π€ Spaces-Pix2Pix_Video-blue.png" height="20"/> |
|
</a> |
|
</svg> |
|
|
|
</div> |
|
|
|
</div> |
|
|
|
""" |
|
|
|
with gr.Blocks(css='style.css') as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.HTML(title) |
|
with gr.Row(): |
|
with gr.Column(): |
|
video_inp = gr.Video(label="Video source", source="upload", type="filepath", elem_id="input-vid") |
|
video_out = gr.Video(label="ControlNet video result", elem_id="video-output") |
|
with gr.Group(elem_id="share-btn-container", visible=False) as share_group: |
|
community_icon = gr.HTML(community_icon_html) |
|
loading_icon = gr.HTML(loading_icon_html) |
|
share_button = gr.Button("Share to community", elem_id="share-btn") |
|
with gr.Column(): |
|
|
|
gr.HTML(""" |
|
<a style="display:inline-block" href="https://huggingface.co/spaces/fffiloni/Pix2Pix-Video?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> |
|
work with longer videos / skip the queue: |
|
""", elem_id="duplicate-container") |
|
prompt = gr.Textbox(label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in") |
|
control_task = gr.Dropdown(label="Control Task", choices=["Canny", "Depth", "Pose"], value="Pose", multiselect=False) |
|
with gr.Row(): |
|
seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=123456) |
|
trim_in = gr.Slider(label="Cut video at (s)", minimun=1, maximum=5, step=1, value=1) |
|
ddim_steps = gr.Slider(label='Steps', |
|
minimum=1, |
|
maximum=100, |
|
value=20, |
|
step=1) |
|
scale = gr.Slider(label='Guidance Scale', |
|
minimum=0.1, |
|
maximum=30.0, |
|
value=9.0, |
|
step=0.1) |
|
|
|
submit_btn = gr.Button("Generate Pix2Pix video") |
|
|
|
|
|
|
|
inputs = [prompt,video_inp,control_task, seed_inp, trim_in, ddim_steps, scale] |
|
outputs = [video_out, share_group] |
|
|
|
|
|
|
|
gr.HTML(article) |
|
|
|
submit_btn.click(infer, inputs, outputs) |
|
share_button.click(None, [], [], _js=share_js) |
|
|
|
|
|
|
|
demo.launch().queue(max_size=12) |