|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
|
|
|
|
from transformers import ( |
|
AutoTokenizer, |
|
CLIPTextConfig, |
|
CLIPTextModel, |
|
CLIPTokenizer, |
|
T5EncoderModel, |
|
) |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
FlowMatchEulerDiscreteScheduler, |
|
FluxControlNetInpaintPipeline, |
|
FluxControlNetModel, |
|
FluxTransformer2DModel, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
) |
|
|
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class FluxControlNetInpaintPipelineTests(unittest.TestCase, PipelineTesterMixin): |
|
pipeline_class = FluxControlNetInpaintPipeline |
|
params = frozenset( |
|
[ |
|
"prompt", |
|
"height", |
|
"width", |
|
"guidance_scale", |
|
"prompt_embeds", |
|
"pooled_prompt_embeds", |
|
"image", |
|
"mask_image", |
|
"control_image", |
|
"strength", |
|
"num_inference_steps", |
|
"controlnet_conditioning_scale", |
|
] |
|
) |
|
batch_params = frozenset(["prompt", "image", "mask_image", "control_image"]) |
|
test_xformers_attention = False |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
transformer = FluxTransformer2DModel( |
|
patch_size=1, |
|
in_channels=8, |
|
num_layers=1, |
|
num_single_layers=1, |
|
attention_head_dim=16, |
|
num_attention_heads=2, |
|
joint_attention_dim=32, |
|
pooled_projection_dim=32, |
|
axes_dims_rope=[4, 4, 8], |
|
) |
|
clip_text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
hidden_act="gelu", |
|
projection_dim=32, |
|
) |
|
|
|
torch.manual_seed(0) |
|
text_encoder = CLIPTextModel(clip_text_encoder_config) |
|
|
|
torch.manual_seed(0) |
|
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
sample_size=32, |
|
in_channels=3, |
|
out_channels=3, |
|
block_out_channels=(4,), |
|
layers_per_block=1, |
|
latent_channels=2, |
|
norm_num_groups=1, |
|
use_quant_conv=False, |
|
use_post_quant_conv=False, |
|
shift_factor=0.0609, |
|
scaling_factor=1.5035, |
|
) |
|
|
|
torch.manual_seed(0) |
|
controlnet = FluxControlNetModel( |
|
patch_size=1, |
|
in_channels=8, |
|
num_layers=1, |
|
num_single_layers=1, |
|
attention_head_dim=16, |
|
num_attention_heads=2, |
|
joint_attention_dim=32, |
|
pooled_projection_dim=32, |
|
axes_dims_rope=[4, 4, 8], |
|
) |
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler() |
|
|
|
return { |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder, |
|
"text_encoder_2": text_encoder_2, |
|
"tokenizer": tokenizer, |
|
"tokenizer_2": tokenizer_2, |
|
"transformer": transformer, |
|
"vae": vae, |
|
"controlnet": controlnet, |
|
} |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
mask_image = torch.ones((1, 1, 32, 32)).to(device) |
|
control_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"image": image, |
|
"mask_image": mask_image, |
|
"control_image": control_image, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 5.0, |
|
"height": 32, |
|
"width": 32, |
|
"max_sequence_length": 48, |
|
"strength": 0.8, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def test_flux_controlnet_inpaint_with_num_images_per_prompt(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["num_images_per_prompt"] = 2 |
|
output = pipe(**inputs) |
|
images = output.images |
|
|
|
assert images.shape == (2, 32, 32, 3) |
|
|
|
def test_flux_controlnet_inpaint_with_controlnet_conditioning_scale(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output_default = pipe(**inputs) |
|
image_default = output_default.images |
|
|
|
inputs["controlnet_conditioning_scale"] = 0.5 |
|
output_scaled = pipe(**inputs) |
|
image_scaled = output_scaled.images |
|
|
|
|
|
assert not np.allclose(image_default, image_scaled, atol=0.01) |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=3e-3) |
|
|