AniDoc / models_diffusers /camera /motion_module.py
fffiloni's picture
Migrated from GitHub
c705408 verified
from dataclasses import dataclass
from typing import Callable, Optional
import torch
from torch import nn
from diffusers.utils import BaseOutput
from diffusers.models.attention_processor import Attention
from diffusers.models.attention import FeedForward
from typing import Dict, Any
# from cameractrl.models.attention_processor import PoseAdaptorAttnProcessor
from models_diffusers.camera.attention_processor import PoseAdaptorAttnProcessor
from einops import rearrange
import math
class InflatedGroupNorm(nn.GroupNorm):
def forward(self, x):
# return super().forward(x)
video_length = x.shape[2]
x = rearrange(x, "b c f h w -> (b f) c h w")
x = super().forward(x)
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
return x
def zero_module(module):
# Zero out the parameters of a module and return it.
for p in module.parameters():
p.detach().zero_()
return module
@dataclass
class TemporalTransformer3DModelOutput(BaseOutput):
sample: torch.FloatTensor
def get_motion_module(
in_channels,
motion_module_type: str,
motion_module_kwargs: dict
):
if motion_module_type == "Vanilla":
return VanillaTemporalModule(in_channels=in_channels, **motion_module_kwargs)
else:
raise ValueError
class VanillaTemporalModule(nn.Module):
def __init__(
self,
in_channels,
num_attention_heads=8,
num_transformer_block=2,
attention_block_types=("Temporal_Self",),
temporal_position_encoding=True,
temporal_position_encoding_max_len=32,
temporal_attention_dim_div=1,
cross_attention_dim=320,
zero_initialize=True,
encoder_hidden_states_query=(False, False),
attention_activation_scale=1.0,
attention_processor_kwargs: Dict = {},
causal_temporal_attention=False,
causal_temporal_attention_mask_type="",
rescale_output_factor=1.0
):
super().__init__()
self.temporal_transformer = TemporalTransformer3DModel(
in_channels=in_channels,
num_attention_heads=num_attention_heads,
attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div,
num_layers=num_transformer_block,
attention_block_types=attention_block_types,
cross_attention_dim=cross_attention_dim,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
encoder_hidden_states_query=encoder_hidden_states_query,
attention_activation_scale=attention_activation_scale,
attention_processor_kwargs=attention_processor_kwargs,
causal_temporal_attention=causal_temporal_attention,
causal_temporal_attention_mask_type=causal_temporal_attention_mask_type,
rescale_output_factor=rescale_output_factor
)
if zero_initialize:
self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out)
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None,
cross_attention_kwargs: Dict[str, Any] = {}):
hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask, cross_attention_kwargs=cross_attention_kwargs)
output = hidden_states
return output
class TemporalTransformer3DModel(nn.Module):
def __init__(
self,
in_channels,
num_attention_heads,
attention_head_dim,
num_layers,
attention_block_types=("Temporal_Self", "Temporal_Self",),
dropout=0.0,
norm_num_groups=32,
cross_attention_dim=320,
activation_fn="geglu",
attention_bias=False,
upcast_attention=False,
temporal_position_encoding=False,
temporal_position_encoding_max_len=32,
encoder_hidden_states_query=(False, False),
attention_activation_scale=1.0,
attention_processor_kwargs: Dict = {},
causal_temporal_attention=None,
causal_temporal_attention_mask_type="",
rescale_output_factor=1.0
):
super().__init__()
assert causal_temporal_attention is not None
self.causal_temporal_attention = causal_temporal_attention
assert (not causal_temporal_attention) or (causal_temporal_attention_mask_type != "")
self.causal_temporal_attention_mask_type = causal_temporal_attention_mask_type
self.causal_temporal_attention_mask = None
inner_dim = num_attention_heads * attention_head_dim
self.norm = InflatedGroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
self.proj_in = nn.Linear(in_channels, inner_dim)
self.transformer_blocks = nn.ModuleList(
[
TemporalTransformerBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
attention_block_types=attention_block_types,
dropout=dropout,
norm_num_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
attention_bias=attention_bias,
upcast_attention=upcast_attention,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
encoder_hidden_states_query=encoder_hidden_states_query,
attention_activation_scale=attention_activation_scale,
attention_processor_kwargs=attention_processor_kwargs,
rescale_output_factor=rescale_output_factor,
)
for d in range(num_layers)
]
)
self.proj_out = nn.Linear(inner_dim, in_channels)
def get_causal_temporal_attention_mask(self, hidden_states):
batch_size, sequence_length, dim = hidden_states.shape
if self.causal_temporal_attention_mask is None or self.causal_temporal_attention_mask.shape != (
batch_size, sequence_length, sequence_length):
if self.causal_temporal_attention_mask_type == "causal":
# 1. vanilla causal mask
mask = torch.tril(torch.ones(sequence_length, sequence_length))
elif self.causal_temporal_attention_mask_type == "2-seq":
# 2. 2-seq
mask = torch.zeros(sequence_length, sequence_length)
mask[:sequence_length // 2, :sequence_length // 2] = 1
mask[-sequence_length // 2:, -sequence_length // 2:] = 1
elif self.causal_temporal_attention_mask_type == "0-prev":
# attn to the previous frame
indices = torch.arange(sequence_length)
indices_prev = indices - 1
indices_prev[0] = 0
mask = torch.zeros(sequence_length, sequence_length)
mask[:, 0] = 1.
mask[indices, indices_prev] = 1.
elif self.causal_temporal_attention_mask_type == "0":
# only attn to first frame
mask = torch.zeros(sequence_length, sequence_length)
mask[:, 0] = 1
elif self.causal_temporal_attention_mask_type == "wo-self":
indices = torch.arange(sequence_length)
mask = torch.ones(sequence_length, sequence_length)
mask[indices, indices] = 0
elif self.causal_temporal_attention_mask_type == "circle":
indices = torch.arange(sequence_length)
indices_prev = indices - 1
indices_prev[0] = 0
mask = torch.eye(sequence_length)
mask[indices, indices_prev] = 1
mask[0, -1] = 1
else:
raise ValueError
# generate attention mask fron binary values
mask = mask.masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
mask = mask.unsqueeze(0)
mask = mask.repeat(batch_size, 1, 1)
self.causal_temporal_attention_mask = mask.to(hidden_states.device)
return self.causal_temporal_attention_mask
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None,
cross_attention_kwargs: Dict[str, Any] = {},):
residual = hidden_states
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
height, width = hidden_states.shape[-2:]
hidden_states = self.norm(hidden_states)
hidden_states = rearrange(hidden_states, "b c f h w -> (b h w) f c")
hidden_states = self.proj_in(hidden_states)
attention_mask = self.get_causal_temporal_attention_mask(
hidden_states) if self.causal_temporal_attention else attention_mask
# Transformer Blocks
for block in self.transformer_blocks:
hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs)
hidden_states = self.proj_out(hidden_states)
hidden_states = rearrange(hidden_states, "(b h w) f c -> b c f h w", h=height, w=width)
output = hidden_states + residual
return output
class TemporalTransformerBlock(nn.Module):
def __init__(
self,
dim,
num_attention_heads,
attention_head_dim,
attention_block_types=("Temporal_Self", "Temporal_Self",),
dropout=0.0,
norm_num_groups=32,
cross_attention_dim=768,
activation_fn="geglu",
attention_bias=False,
upcast_attention=False,
temporal_position_encoding=False,
temporal_position_encoding_max_len=32,
encoder_hidden_states_query=(False, False),
attention_activation_scale=1.0,
attention_processor_kwargs: Dict = {},
rescale_output_factor=1.0
):
super().__init__()
attention_blocks = []
norms = []
self.attention_block_types = attention_block_types
for block_idx, block_name in enumerate(attention_block_types):
attention_blocks.append(
TemporalSelfAttention(
attention_mode=block_name,
cross_attention_dim=cross_attention_dim if block_name in ['Temporal_Cross', 'Temporal_Pose_Adaptor'] else None,
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
rescale_output_factor=rescale_output_factor,
)
)
norms.append(nn.LayerNorm(dim))
self.attention_blocks = nn.ModuleList(attention_blocks)
self.norms = nn.ModuleList(norms)
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
self.ff_norm = nn.LayerNorm(dim)
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs: Dict[str, Any] = {}):
for attention_block, norm, attention_block_type in zip(self.attention_blocks, self.norms, self.attention_block_types):
norm_hidden_states = norm(hidden_states)
hidden_states = attention_block(
norm_hidden_states,
encoder_hidden_states=norm_hidden_states if attention_block_type == 'Temporal_Self' else encoder_hidden_states,
attention_mask=attention_mask,
**cross_attention_kwargs
) + hidden_states
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
output = hidden_states
return output
class PositionalEncoding(nn.Module):
def __init__(
self,
d_model,
dropout=0.,
max_len=32,
):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(1, max_len, d_model)
pe[0, :, 0::2] = torch.sin(position * div_term)
pe[0, :, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :x.size(1)]
return self.dropout(x)
class TemporalSelfAttention(Attention):
def __init__(
self,
attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=32,
rescale_output_factor=1.0,
*args, **kwargs
):
super().__init__(*args, **kwargs)
assert attention_mode == "Temporal_Self"
self.pos_encoder = PositionalEncoding(
kwargs["query_dim"],
max_len=temporal_position_encoding_max_len
) if temporal_position_encoding else None
self.rescale_output_factor = rescale_output_factor
def set_use_memory_efficient_attention_xformers(
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
):
# disable motion module efficient xformers to avoid bad results, don't know why
# TODO: fix this bug
pass
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs):
# The `Attention` class can call different attention processors / attention functions
# here we simply pass along all tensors to the selected processor class
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
# add position encoding
if self.pos_encoder is not None:
hidden_states = self.pos_encoder(hidden_states)
if "pose_feature" in cross_attention_kwargs:
pose_feature = cross_attention_kwargs["pose_feature"]
if pose_feature.ndim == 5:
pose_feature = rearrange(pose_feature, "b c f h w -> (b h w) f c")
else:
assert pose_feature.ndim == 3
cross_attention_kwargs["pose_feature"] = pose_feature
if isinstance(self.processor, PoseAdaptorAttnProcessor):
return self.processor(
self,
hidden_states,
cross_attention_kwargs.pop('pose_feature'),
encoder_hidden_states=None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
elif hasattr(self.processor, "__call__"):
return self.processor.__call__(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
else:
return self.processor(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)