Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import warnings | |
| import numpy as np | |
| import cv2 | |
| import torch | |
| import torch.nn.functional as F | |
| from cotracker.models.core.model_utils import smart_cat, get_points_on_a_grid | |
| from cotracker.models.build_cotracker import build_cotracker | |
| def gen_gaussian_heatmap(imgSize=200): | |
| circle_img = np.zeros((imgSize, imgSize), np.float32) | |
| circle_mask = cv2.circle(circle_img, (imgSize//2, imgSize//2), imgSize//2, 1, -1) | |
| isotropicGrayscaleImage = np.zeros((imgSize, imgSize), np.float32) | |
| # Guass Map | |
| for i in range(imgSize): | |
| for j in range(imgSize): | |
| isotropicGrayscaleImage[i, j] = 1 / 2 / np.pi / (40 ** 2) * np.exp( | |
| -1 / 2 * ((i - imgSize / 2) ** 2 / (40 ** 2) + (j - imgSize / 2) ** 2 / (40 ** 2))) | |
| isotropicGrayscaleImage = isotropicGrayscaleImage * circle_mask | |
| isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)).astype(np.float32) | |
| isotropicGrayscaleImage = (isotropicGrayscaleImage / np.max(isotropicGrayscaleImage)*255).astype(np.uint8) | |
| # isotropicGrayscaleImage = cv2.resize(isotropicGrayscaleImage, (40, 40)) | |
| return isotropicGrayscaleImage | |
| def draw_heatmap(img, center_coordinate, heatmap_template, side, width, height): | |
| x1 = max(center_coordinate[0] - side, 1) | |
| x2 = min(center_coordinate[0] + side, width - 1) | |
| y1 = max(center_coordinate[1] - side, 1) | |
| y2 = min(center_coordinate[1] + side, height - 1) | |
| x1, x2, y1, y2 = int(x1), int(x2), int(y1), int(y2) | |
| if (x2 - x1) < 1 or (y2 - y1) < 1: | |
| print(center_coordinate, "x1, x2, y1, y2", x1, x2, y1, y2) | |
| return img | |
| need_map = cv2.resize(heatmap_template, (x2-x1, y2-y1)) | |
| img[y1:y2,x1:x2] = need_map | |
| return img | |
| def generate_gassian_heatmap(pred_tracks, pred_visibility=None, image_size=None, side=20): | |
| width, height = image_size | |
| num_frames, num_points = pred_tracks.shape[:2] | |
| point_index_list = [point_idx for point_idx in range(num_points)] | |
| heatmap_template = gen_gaussian_heatmap() | |
| image_list = [] | |
| for frame_idx in range(num_frames): | |
| img = np.zeros((height, width), np.float32) | |
| for point_idx in point_index_list: | |
| px, py = pred_tracks[frame_idx, point_idx] | |
| if px < 0 or py < 0 or px >= width or py >= height: | |
| continue | |
| if pred_visibility is not None: | |
| if (not pred_visibility[frame_idx, point_idx]): | |
| continue | |
| img = draw_heatmap(img, (px, py), heatmap_template, side, width, height) | |
| img = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_GRAY2RGB) | |
| img = torch.from_numpy(img).permute(2, 0, 1).contiguous() | |
| image_list.append(img) | |
| video_gaussion_map = torch.stack(image_list, dim=0) | |
| return video_gaussion_map | |
| # TODO: need further check and investigation | |
| def sample_trajectories( | |
| pred_tracks, pred_visibility, | |
| max_points=10, | |
| motion_threshold=1, | |
| vis_threshold=5, | |
| ): | |
| # pred_tracks: (b, f, num_points, 2) | |
| # pred_visibility: (b, f, num_points) | |
| batch_size, num_frames, num_points = pred_visibility.shape | |
| # 1. Remove points with low visibility | |
| mask = pred_visibility.sum(dim=1) > vis_threshold | |
| mask = mask.unsqueeze(1).repeat(1, num_frames, 1) | |
| pred_tracks = pred_tracks[mask].view(batch_size, num_frames, -1, 2) | |
| pred_visibility = pred_visibility[mask].view(batch_size, num_frames, -1) | |
| # 2. Thresholding: remove points with too small motions | |
| # compute the motion of each point | |
| diff = pred_tracks[:, 1:] - pred_tracks[:, :-1] | |
| # (b, f-1, num_points), sqrt(x^2 + y^2) | |
| motion = torch.norm(diff, dim=-1) | |
| # (b, num_points), mean motion for each point | |
| motion = torch.mean(motion, dim=1) | |
| # apply threshold | |
| mask = motion > motion_threshold # (b, num_points) | |
| assert mask.shape[0] == 1 | |
| num_keeped = mask.sum() | |
| if num_keeped < max_points: | |
| indices = torch.argsort(motion, dim=-1, descending=True)[:, :max_points] # (bs, max_points) | |
| mask = torch.zeros_like(mask) # (bs, num_points) | |
| # set mask to 1 for the top max_points | |
| mask[0, indices] = 1 | |
| num_keeped = mask.sum() # note sometimes mask.sum() < max_points | |
| motion = motion[mask].view(batch_size, num_keeped) | |
| # keep shape | |
| mask = mask.unsqueeze(1).repeat(1, num_frames, 1) | |
| pred_tracks = pred_tracks[mask].view(batch_size, num_frames, num_keeped, 2) | |
| pred_visibility = pred_visibility[mask].view(batch_size, num_frames, num_keeped) | |
| # 3. Sampling with larger prob for large motions | |
| num_points = min(max_points, num_keeped) | |
| if num_points == 0: | |
| warnings.warn("No points left after filtering") | |
| return None, None | |
| prob = motion / motion.max() | |
| prob = prob / prob.sum() | |
| sampled_indices = torch.multinomial(prob, num_points, replacement=False) | |
| sampled_indices = sampled_indices.squeeze(0) # (num_points, ) | |
| pred_tracks_sampled = pred_tracks[:, :, sampled_indices] | |
| pred_visibility_sampled = pred_visibility[:, :, sampled_indices] | |
| return pred_tracks_sampled, pred_visibility_sampled | |
| def sample_trajectories_with_ref( | |
| pred_tracks, pred_visibility, coords0, | |
| max_points=10, | |
| motion_threshold=1, | |
| vis_threshold=5, | |
| ): | |
| batch_size, num_frames, num_points = pred_visibility.shape | |
| visibility_sum = pred_visibility.sum(dim=1) | |
| vis_mask = visibility_sum > vis_threshold # (batch_size, num_points) | |
| pred_tracks = pred_tracks * vis_mask.unsqueeze(1).unsqueeze(-1) # (batch_size, num_frames, num_points, 2) | |
| pred_visibility = pred_visibility * vis_mask.unsqueeze(1) | |
| indices = vis_mask.nonzero(as_tuple=False) # (num_visible_points, 2) | |
| if indices.size(0) == 0: | |
| warnings.warn("No points left after visibility filtering") | |
| return None, None, None | |
| batch_indices, point_indices = indices[:, 0], indices[:, 1] | |
| coords0_filtered = coords0[batch_indices, point_indices] # (num_visible_points, 2) | |
| diff = pred_tracks[:, 1:] - pred_tracks[:, :-1] # (batch_size, num_frames-1, num_points, 2) | |
| motion = torch.norm(diff, dim=-1).mean(dim=1) # (batch_size, num_points) | |
| motion_mask = motion > motion_threshold | |
| combined_mask = vis_mask & motion_mask # (batch_size, num_points) | |
| indices = combined_mask.nonzero(as_tuple=False) | |
| if indices.size(0) == 0: | |
| warnings.warn("No points left after motion filtering") | |
| return None, None, None | |
| batch_indices, point_indices = indices[:, 0], indices[:, 1] | |
| pred_tracks_filtered = pred_tracks[batch_indices, :, point_indices, :] # (num_filtered_points, num_frames, 2) | |
| pred_visibility_filtered = pred_visibility[batch_indices, :, point_indices] # (num_filtered_points, num_frames) | |
| coords0_filtered = coords0[batch_indices, point_indices, :] # (num_filtered_points, 2) | |
| motion_filtered = motion[batch_indices, point_indices] # (num_filtered_points) | |
| num_keeped = motion_filtered.size(0) | |
| num_points_sampled = min(max_points, num_keeped) | |
| if num_points_sampled == 0: | |
| warnings.warn("No points left after filtering") | |
| return None, None, None | |
| prob = motion_filtered / motion_filtered.max() | |
| prob = prob / prob.sum() | |
| sampled_indices = torch.multinomial(prob, num_points_sampled, replacement=False) | |
| pred_tracks_sampled = pred_tracks_filtered[sampled_indices] # (num_points_sampled, num_frames, 2) | |
| pred_visibility_sampled = pred_visibility_filtered[sampled_indices] # (num_points_sampled, num_frames) | |
| coords0_sampled = coords0_filtered[sampled_indices] # (num_points_sampled, 2) | |
| pred_tracks_sampled = pred_tracks_sampled.view(batch_size, num_points_sampled, num_frames, 2).transpose(1, 2) | |
| pred_visibility_sampled = pred_visibility_sampled.view(batch_size, num_points_sampled, num_frames).transpose(1, 2) | |
| coords0_sampled = coords0_sampled.view(batch_size, num_points_sampled, 2) | |
| return pred_tracks_sampled, pred_visibility_sampled, coords0_sampled | |
| class CoTrackerPredictor(torch.nn.Module): | |
| def __init__( | |
| self, | |
| checkpoint="./checkpoints/cotracker2.pth", | |
| shift_grid=False, | |
| ): | |
| super().__init__() | |
| self.support_grid_size = 6 | |
| model = build_cotracker(checkpoint) | |
| self.interp_shape = model.model_resolution | |
| self.model = model | |
| self.model.eval() | |
| self.shift_grid = shift_grid | |
| def forward( | |
| self, | |
| video, # (B, T, 3, H, W) | |
| # input prompt types: | |
| # - None. Dense tracks are computed in this case. You can adjust *query_frame* to compute tracks starting from a specific frame. | |
| # *backward_tracking=True* will compute tracks in both directions. | |
| # - queries. Queried points of shape (B, N, 3) in format (t, x, y) for frame index and pixel coordinates. | |
| # - grid_size. Grid of N*N points from the first frame. if segm_mask is provided, then computed only for the mask. | |
| # You can adjust *query_frame* and *backward_tracking* for the regular grid in the same way as for dense tracks. | |
| queries: torch.Tensor = None, | |
| segm_mask: torch.Tensor = None, # Segmentation mask of shape (B, 1, H, W) | |
| grid_size: int = 0, | |
| grid_query_frame: int = 0, # only for dense and regular grid tracks | |
| backward_tracking: bool = False, | |
| ): | |
| if queries is None and grid_size == 0: | |
| tracks, visibilities = self._compute_dense_tracks( | |
| video, | |
| grid_query_frame=grid_query_frame, | |
| backward_tracking=backward_tracking, | |
| ) | |
| else: | |
| tracks, visibilities = self._compute_sparse_tracks( | |
| video, | |
| queries, | |
| segm_mask, | |
| grid_size, | |
| add_support_grid=(grid_size == 0 or segm_mask is not None), | |
| grid_query_frame=grid_query_frame, | |
| backward_tracking=backward_tracking, | |
| ) | |
| return tracks, visibilities | |
| def _compute_dense_tracks(self, video, grid_query_frame, grid_size=80, backward_tracking=False): | |
| *_, H, W = video.shape | |
| grid_step = W // grid_size | |
| grid_width = W // grid_step | |
| grid_height = H // grid_step | |
| tracks = visibilities = None | |
| grid_pts = torch.zeros((1, grid_width * grid_height, 3)).to(video.device) | |
| grid_pts[0, :, 0] = grid_query_frame | |
| for offset in range(grid_step * grid_step): | |
| print(f"step {offset} / {grid_step * grid_step}") | |
| ox = offset % grid_step | |
| oy = offset // grid_step | |
| grid_pts[0, :, 1] = torch.arange(grid_width).repeat(grid_height) * grid_step + ox | |
| grid_pts[0, :, 2] = ( | |
| torch.arange(grid_height).repeat_interleave(grid_width) * grid_step + oy | |
| ) | |
| tracks_step, visibilities_step = self._compute_sparse_tracks( | |
| video=video, | |
| queries=grid_pts, | |
| backward_tracking=backward_tracking, | |
| ) | |
| tracks = smart_cat(tracks, tracks_step, dim=2) | |
| visibilities = smart_cat(visibilities, visibilities_step, dim=2) | |
| return tracks, visibilities | |
| def _compute_sparse_tracks( | |
| self, | |
| video, | |
| queries, | |
| segm_mask=None, | |
| grid_size=0, | |
| add_support_grid=False, | |
| grid_query_frame=0, | |
| backward_tracking=False, | |
| ): | |
| B, T, C, H, W = video.shape | |
| video = video.reshape(B * T, C, H, W) | |
| video = F.interpolate(video, tuple(self.interp_shape), mode="bilinear", align_corners=True) | |
| video = video.reshape(B, T, 3, self.interp_shape[0], self.interp_shape[1]) | |
| if queries is not None: | |
| B, N, D = queries.shape | |
| assert D == 3 | |
| queries = queries.clone() | |
| queries[:, :, 1:] *= queries.new_tensor( | |
| [ | |
| (self.interp_shape[1] - 1) / (W - 1), | |
| (self.interp_shape[0] - 1) / (H - 1), | |
| ] | |
| ) | |
| elif grid_size > 0: | |
| grid_pts = get_points_on_a_grid(grid_size, self.interp_shape, device=video.device, shift_grid=self.shift_grid) | |
| if segm_mask is not None: | |
| segm_mask = F.interpolate(segm_mask, tuple(self.interp_shape), mode="nearest") | |
| point_mask = segm_mask[0, 0][ | |
| (grid_pts[0, :, 1]).round().long().cpu(), | |
| (grid_pts[0, :, 0]).round().long().cpu(), | |
| ].bool() | |
| grid_pts = grid_pts[:, point_mask] | |
| queries = torch.cat( | |
| [torch.ones_like(grid_pts[:, :, :1]) * grid_query_frame, grid_pts], | |
| dim=2, | |
| ).repeat(B, 1, 1) | |
| if add_support_grid: | |
| grid_pts = get_points_on_a_grid( | |
| self.support_grid_size, self.interp_shape, device=video.device, shift_grid=self.shift_grid, | |
| ) | |
| grid_pts = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2) | |
| grid_pts = grid_pts.repeat(B, 1, 1) | |
| queries = torch.cat([queries, grid_pts], dim=1) | |
| tracks, visibilities, __ = self.model.forward(video=video, queries=queries, iters=6) | |
| if backward_tracking: | |
| tracks, visibilities = self._compute_backward_tracks( | |
| video, queries, tracks, visibilities | |
| ) | |
| if add_support_grid: | |
| queries[:, -self.support_grid_size**2 :, 0] = T - 1 | |
| if add_support_grid: | |
| tracks = tracks[:, :, : -self.support_grid_size**2] | |
| visibilities = visibilities[:, :, : -self.support_grid_size**2] | |
| thr = 0.9 | |
| visibilities = visibilities > thr | |
| # correct query-point predictions | |
| # see https://github.com/facebookresearch/co-tracker/issues/28 | |
| # TODO: batchify | |
| for i in range(len(queries)): | |
| queries_t = queries[i, : tracks.size(2), 0].to(torch.int64) | |
| arange = torch.arange(0, len(queries_t)) | |
| # overwrite the predictions with the query points | |
| tracks[i, queries_t, arange] = queries[i, : tracks.size(2), 1:] | |
| # correct visibilities, the query points should be visible | |
| visibilities[i, queries_t, arange] = True | |
| tracks *= tracks.new_tensor( | |
| [(W - 1) / (self.interp_shape[1] - 1), (H - 1) / (self.interp_shape[0] - 1)] | |
| ) | |
| return tracks, visibilities | |
| def _compute_backward_tracks(self, video, queries, tracks, visibilities): | |
| inv_video = video.flip(1).clone() | |
| inv_queries = queries.clone() | |
| inv_queries[:, :, 0] = inv_video.shape[1] - inv_queries[:, :, 0] - 1 | |
| inv_tracks, inv_visibilities, __ = self.model(video=inv_video, queries=inv_queries, iters=6) | |
| inv_tracks = inv_tracks.flip(1) | |
| inv_visibilities = inv_visibilities.flip(1) | |
| arange = torch.arange(video.shape[1], device=queries.device)[None, :, None] | |
| mask = (arange < queries[:, None, :, 0]).unsqueeze(-1).repeat(1, 1, 1, 2) | |
| tracks[mask] = inv_tracks[mask] | |
| visibilities[mask[:, :, :, 0]] = inv_visibilities[mask[:, :, :, 0]] | |
| return tracks, visibilities | |
| class CoTrackerOnlinePredictor(torch.nn.Module): | |
| def __init__(self, checkpoint="./checkpoints/cotracker2.pth"): | |
| super().__init__() | |
| self.support_grid_size = 6 | |
| model = build_cotracker(checkpoint) | |
| self.interp_shape = model.model_resolution | |
| self.step = model.window_len // 2 | |
| self.model = model | |
| self.model.eval() | |
| def forward( | |
| self, | |
| video_chunk, | |
| is_first_step: bool = False, | |
| queries: torch.Tensor = None, | |
| grid_size: int = 10, | |
| grid_query_frame: int = 0, | |
| add_support_grid=False, | |
| ): | |
| B, T, C, H, W = video_chunk.shape | |
| # Initialize online video processing and save queried points | |
| # This needs to be done before processing *each new video* | |
| if is_first_step: | |
| self.model.init_video_online_processing() | |
| if queries is not None: | |
| B, N, D = queries.shape | |
| assert D == 3 | |
| queries = queries.clone() | |
| queries[:, :, 1:] *= queries.new_tensor( | |
| [ | |
| (self.interp_shape[1] - 1) / (W - 1), | |
| (self.interp_shape[0] - 1) / (H - 1), | |
| ] | |
| ) | |
| elif grid_size > 0: | |
| grid_pts = get_points_on_a_grid( | |
| grid_size, self.interp_shape, device=video_chunk.device | |
| ) | |
| queries = torch.cat( | |
| [torch.ones_like(grid_pts[:, :, :1]) * grid_query_frame, grid_pts], | |
| dim=2, | |
| ) | |
| if add_support_grid: | |
| grid_pts = get_points_on_a_grid( | |
| self.support_grid_size, self.interp_shape, device=video_chunk.device | |
| ) | |
| grid_pts = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2) | |
| queries = torch.cat([queries, grid_pts], dim=1) | |
| self.queries = queries | |
| return (None, None) | |
| video_chunk = video_chunk.reshape(B * T, C, H, W) | |
| video_chunk = F.interpolate( | |
| video_chunk, tuple(self.interp_shape), mode="bilinear", align_corners=True | |
| ) | |
| video_chunk = video_chunk.reshape(B, T, 3, self.interp_shape[0], self.interp_shape[1]) | |
| tracks, visibilities, __ = self.model( | |
| video=video_chunk, | |
| queries=self.queries, | |
| iters=6, | |
| is_online=True, | |
| ) | |
| thr = 0.9 | |
| return ( | |
| tracks | |
| * tracks.new_tensor( | |
| [ | |
| (W - 1) / (self.interp_shape[1] - 1), | |
| (H - 1) / (self.interp_shape[0] - 1), | |
| ] | |
| ), | |
| visibilities > thr, | |
| ) | |