PromptNet / models /r2gen.py
fenglinliu's picture
Upload 55 files
6e32a75 verified
raw
history blame
2.56 kB
import torch
import torch.nn as nn
import numpy as np
from modules.visual_extractor import VisualExtractor
from modules.encoder_decoder import EncoderDecoder
import torch.nn.functional as F
class R2GenModel(nn.Module):
def __init__(self, args, tokenizer):
super(R2GenModel, self).__init__()
self.args = args
self.tokenizer = tokenizer
self.visual_extractor = VisualExtractor(args)
self.encoder_decoder = EncoderDecoder(args, tokenizer)
if args.dataset_name == 'iu_xray':
self.forward = self.forward_iu_xray
else:
self.forward = self.forward_mimic_cxr
self.affine_a = nn.Linear(1024, 2048)
self.affine_b = nn.Linear(1024, 2048)
self.affine_c = nn.Linear(1024, 2048)
self.affine_d = nn.Linear(1024, 2048)
self.affine_aa = nn.Linear(1024, 2048)
self.affine_bb = nn.Linear(1024, 2048)
def __str__(self):
model_parameters = filter(lambda p: p.requires_grad, self.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
return super().__str__() + '\nTrainable parameters: {}'.format(params)
def forward_iu_xray(self, images, targets=None, mode='train'):
att_feats_0, fc_feats_0 = self.visual_extractor(images[:, 0])
att_feats_1, fc_feats_1 = self.visual_extractor(images[:, 1])
#new add
att_feats_0=F.relu(self.affine_a(att_feats_0))
fc_feats_0=F.relu(self.affine_b(fc_feats_0))
att_feats_1=F.relu(self.affine_c(att_feats_1))
fc_feats_1=F.relu(self.affine_d(fc_feats_1))
fc_feats = torch.cat((fc_feats_0, fc_feats_1), dim=1)
att_feats = torch.cat((att_feats_0, att_feats_1), dim=1)
if mode == 'train':
output = self.encoder_decoder(fc_feats, att_feats, targets, mode='forward')
elif mode == 'sample':
output, _ = self.encoder_decoder(fc_feats, att_feats, mode='sample')
else:
raise ValueError
return output
def forward_mimic_cxr(self, images, targets=None, mode='train'):
att_feats1, fc_feats1 = self.visual_extractor(images)
att_feats=F.relu(self.affine_aa(att_feats1))
fc_feats=F.relu(self.affine_bb(fc_feats1))
if mode == 'train':
output = self.encoder_decoder(fc_feats, att_feats, targets, mode='forward')
elif mode == 'sample':
output, _ = self.encoder_decoder(fc_feats, att_feats, mode='sample')
else:
raise ValueError
return output