Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Author: Zhuo Su, Wenzhe Liu | |
Date: Feb 18, 2021 | |
""" | |
import math | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
def img2tensor(imgs, bgr2rgb=True, float32=True): | |
"""Numpy array to tensor. | |
Args: | |
imgs (list[ndarray] | ndarray): Input images. | |
bgr2rgb (bool): Whether to change bgr to rgb. | |
float32 (bool): Whether to change to float32. | |
Returns: | |
list[tensor] | tensor: Tensor images. If returned results only have | |
one element, just return tensor. | |
""" | |
def _totensor(img, bgr2rgb, float32): | |
if img.shape[2] == 3 and bgr2rgb: | |
if img.dtype == 'float64': | |
img = img.astype('float32') | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = torch.from_numpy(img.transpose(2, 0, 1)) | |
if float32: | |
img = img.float() | |
return img | |
if isinstance(imgs, list): | |
return [_totensor(img, bgr2rgb, float32) for img in imgs] | |
else: | |
return _totensor(imgs, bgr2rgb, float32) | |
nets = { | |
'baseline': { | |
'layer0': 'cv', | |
'layer1': 'cv', | |
'layer2': 'cv', | |
'layer3': 'cv', | |
'layer4': 'cv', | |
'layer5': 'cv', | |
'layer6': 'cv', | |
'layer7': 'cv', | |
'layer8': 'cv', | |
'layer9': 'cv', | |
'layer10': 'cv', | |
'layer11': 'cv', | |
'layer12': 'cv', | |
'layer13': 'cv', | |
'layer14': 'cv', | |
'layer15': 'cv', | |
}, | |
'c-v15': { | |
'layer0': 'cd', | |
'layer1': 'cv', | |
'layer2': 'cv', | |
'layer3': 'cv', | |
'layer4': 'cv', | |
'layer5': 'cv', | |
'layer6': 'cv', | |
'layer7': 'cv', | |
'layer8': 'cv', | |
'layer9': 'cv', | |
'layer10': 'cv', | |
'layer11': 'cv', | |
'layer12': 'cv', | |
'layer13': 'cv', | |
'layer14': 'cv', | |
'layer15': 'cv', | |
}, | |
'a-v15': { | |
'layer0': 'ad', | |
'layer1': 'cv', | |
'layer2': 'cv', | |
'layer3': 'cv', | |
'layer4': 'cv', | |
'layer5': 'cv', | |
'layer6': 'cv', | |
'layer7': 'cv', | |
'layer8': 'cv', | |
'layer9': 'cv', | |
'layer10': 'cv', | |
'layer11': 'cv', | |
'layer12': 'cv', | |
'layer13': 'cv', | |
'layer14': 'cv', | |
'layer15': 'cv', | |
}, | |
'r-v15': { | |
'layer0': 'rd', | |
'layer1': 'cv', | |
'layer2': 'cv', | |
'layer3': 'cv', | |
'layer4': 'cv', | |
'layer5': 'cv', | |
'layer6': 'cv', | |
'layer7': 'cv', | |
'layer8': 'cv', | |
'layer9': 'cv', | |
'layer10': 'cv', | |
'layer11': 'cv', | |
'layer12': 'cv', | |
'layer13': 'cv', | |
'layer14': 'cv', | |
'layer15': 'cv', | |
}, | |
'cvvv4': { | |
'layer0': 'cd', | |
'layer1': 'cv', | |
'layer2': 'cv', | |
'layer3': 'cv', | |
'layer4': 'cd', | |
'layer5': 'cv', | |
'layer6': 'cv', | |
'layer7': 'cv', | |
'layer8': 'cd', | |
'layer9': 'cv', | |
'layer10': 'cv', | |
'layer11': 'cv', | |
'layer12': 'cd', | |
'layer13': 'cv', | |
'layer14': 'cv', | |
'layer15': 'cv', | |
}, | |
'avvv4': { | |
'layer0': 'ad', | |
'layer1': 'cv', | |
'layer2': 'cv', | |
'layer3': 'cv', | |
'layer4': 'ad', | |
'layer5': 'cv', | |
'layer6': 'cv', | |
'layer7': 'cv', | |
'layer8': 'ad', | |
'layer9': 'cv', | |
'layer10': 'cv', | |
'layer11': 'cv', | |
'layer12': 'ad', | |
'layer13': 'cv', | |
'layer14': 'cv', | |
'layer15': 'cv', | |
}, | |
'rvvv4': { | |
'layer0': 'rd', | |
'layer1': 'cv', | |
'layer2': 'cv', | |
'layer3': 'cv', | |
'layer4': 'rd', | |
'layer5': 'cv', | |
'layer6': 'cv', | |
'layer7': 'cv', | |
'layer8': 'rd', | |
'layer9': 'cv', | |
'layer10': 'cv', | |
'layer11': 'cv', | |
'layer12': 'rd', | |
'layer13': 'cv', | |
'layer14': 'cv', | |
'layer15': 'cv', | |
}, | |
'cccv4': { | |
'layer0': 'cd', | |
'layer1': 'cd', | |
'layer2': 'cd', | |
'layer3': 'cv', | |
'layer4': 'cd', | |
'layer5': 'cd', | |
'layer6': 'cd', | |
'layer7': 'cv', | |
'layer8': 'cd', | |
'layer9': 'cd', | |
'layer10': 'cd', | |
'layer11': 'cv', | |
'layer12': 'cd', | |
'layer13': 'cd', | |
'layer14': 'cd', | |
'layer15': 'cv', | |
}, | |
'aaav4': { | |
'layer0': 'ad', | |
'layer1': 'ad', | |
'layer2': 'ad', | |
'layer3': 'cv', | |
'layer4': 'ad', | |
'layer5': 'ad', | |
'layer6': 'ad', | |
'layer7': 'cv', | |
'layer8': 'ad', | |
'layer9': 'ad', | |
'layer10': 'ad', | |
'layer11': 'cv', | |
'layer12': 'ad', | |
'layer13': 'ad', | |
'layer14': 'ad', | |
'layer15': 'cv', | |
}, | |
'rrrv4': { | |
'layer0': 'rd', | |
'layer1': 'rd', | |
'layer2': 'rd', | |
'layer3': 'cv', | |
'layer4': 'rd', | |
'layer5': 'rd', | |
'layer6': 'rd', | |
'layer7': 'cv', | |
'layer8': 'rd', | |
'layer9': 'rd', | |
'layer10': 'rd', | |
'layer11': 'cv', | |
'layer12': 'rd', | |
'layer13': 'rd', | |
'layer14': 'rd', | |
'layer15': 'cv', | |
}, | |
'c16': { | |
'layer0': 'cd', | |
'layer1': 'cd', | |
'layer2': 'cd', | |
'layer3': 'cd', | |
'layer4': 'cd', | |
'layer5': 'cd', | |
'layer6': 'cd', | |
'layer7': 'cd', | |
'layer8': 'cd', | |
'layer9': 'cd', | |
'layer10': 'cd', | |
'layer11': 'cd', | |
'layer12': 'cd', | |
'layer13': 'cd', | |
'layer14': 'cd', | |
'layer15': 'cd', | |
}, | |
'a16': { | |
'layer0': 'ad', | |
'layer1': 'ad', | |
'layer2': 'ad', | |
'layer3': 'ad', | |
'layer4': 'ad', | |
'layer5': 'ad', | |
'layer6': 'ad', | |
'layer7': 'ad', | |
'layer8': 'ad', | |
'layer9': 'ad', | |
'layer10': 'ad', | |
'layer11': 'ad', | |
'layer12': 'ad', | |
'layer13': 'ad', | |
'layer14': 'ad', | |
'layer15': 'ad', | |
}, | |
'r16': { | |
'layer0': 'rd', | |
'layer1': 'rd', | |
'layer2': 'rd', | |
'layer3': 'rd', | |
'layer4': 'rd', | |
'layer5': 'rd', | |
'layer6': 'rd', | |
'layer7': 'rd', | |
'layer8': 'rd', | |
'layer9': 'rd', | |
'layer10': 'rd', | |
'layer11': 'rd', | |
'layer12': 'rd', | |
'layer13': 'rd', | |
'layer14': 'rd', | |
'layer15': 'rd', | |
}, | |
'carv4': { | |
'layer0': 'cd', | |
'layer1': 'ad', | |
'layer2': 'rd', | |
'layer3': 'cv', | |
'layer4': 'cd', | |
'layer5': 'ad', | |
'layer6': 'rd', | |
'layer7': 'cv', | |
'layer8': 'cd', | |
'layer9': 'ad', | |
'layer10': 'rd', | |
'layer11': 'cv', | |
'layer12': 'cd', | |
'layer13': 'ad', | |
'layer14': 'rd', | |
'layer15': 'cv', | |
}, | |
} | |
def createConvFunc(op_type): | |
assert op_type in ['cv', 'cd', 'ad', 'rd'], 'unknown op type: %s' % str(op_type) | |
if op_type == 'cv': | |
return F.conv2d | |
if op_type == 'cd': | |
def func(x, weights, bias=None, stride=1, padding=0, dilation=1, groups=1): | |
assert dilation in [1, 2], 'dilation for cd_conv should be in 1 or 2' | |
assert weights.size(2) == 3 and weights.size(3) == 3, 'kernel size for cd_conv should be 3x3' | |
assert padding == dilation, 'padding for cd_conv set wrong' | |
weights_c = weights.sum(dim=[2, 3], keepdim=True) | |
yc = F.conv2d(x, weights_c, stride=stride, padding=0, groups=groups) | |
y = F.conv2d(x, weights, bias, stride=stride, padding=padding, dilation=dilation, groups=groups) | |
return y - yc | |
return func | |
elif op_type == 'ad': | |
def func(x, weights, bias=None, stride=1, padding=0, dilation=1, groups=1): | |
assert dilation in [1, 2], 'dilation for ad_conv should be in 1 or 2' | |
assert weights.size(2) == 3 and weights.size(3) == 3, 'kernel size for ad_conv should be 3x3' | |
assert padding == dilation, 'padding for ad_conv set wrong' | |
shape = weights.shape | |
weights = weights.view(shape[0], shape[1], -1) | |
weights_conv = (weights - weights[:, :, [3, 0, 1, 6, 4, 2, 7, 8, 5]]).view(shape) # clock-wise | |
y = F.conv2d(x, weights_conv, bias, stride=stride, padding=padding, dilation=dilation, groups=groups) | |
return y | |
return func | |
elif op_type == 'rd': | |
def func(x, weights, bias=None, stride=1, padding=0, dilation=1, groups=1): | |
assert dilation in [1, 2], 'dilation for rd_conv should be in 1 or 2' | |
assert weights.size(2) == 3 and weights.size(3) == 3, 'kernel size for rd_conv should be 3x3' | |
padding = 2 * dilation | |
shape = weights.shape | |
if weights.is_cuda: | |
buffer = torch.cuda.FloatTensor(shape[0], shape[1], 5 * 5).fill_(0) | |
else: | |
buffer = torch.zeros(shape[0], shape[1], 5 * 5).to(weights.device) | |
weights = weights.view(shape[0], shape[1], -1) | |
buffer[:, :, [0, 2, 4, 10, 14, 20, 22, 24]] = weights[:, :, 1:] | |
buffer[:, :, [6, 7, 8, 11, 13, 16, 17, 18]] = -weights[:, :, 1:] | |
buffer[:, :, 12] = 0 | |
buffer = buffer.view(shape[0], shape[1], 5, 5) | |
y = F.conv2d(x, buffer, bias, stride=stride, padding=padding, dilation=dilation, groups=groups) | |
return y | |
return func | |
else: | |
print('impossible to be here unless you force that') | |
return None | |
class Conv2d(nn.Module): | |
def __init__(self, pdc, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False): | |
super(Conv2d, self).__init__() | |
if in_channels % groups != 0: | |
raise ValueError('in_channels must be divisible by groups') | |
if out_channels % groups != 0: | |
raise ValueError('out_channels must be divisible by groups') | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.padding = padding | |
self.dilation = dilation | |
self.groups = groups | |
self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels // groups, kernel_size, kernel_size)) | |
if bias: | |
self.bias = nn.Parameter(torch.Tensor(out_channels)) | |
else: | |
self.register_parameter('bias', None) | |
self.reset_parameters() | |
self.pdc = pdc | |
def reset_parameters(self): | |
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) | |
if self.bias is not None: | |
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight) | |
bound = 1 / math.sqrt(fan_in) | |
nn.init.uniform_(self.bias, -bound, bound) | |
def forward(self, input): | |
return self.pdc(input, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) | |
class CSAM(nn.Module): | |
""" | |
Compact Spatial Attention Module | |
""" | |
def __init__(self, channels): | |
super(CSAM, self).__init__() | |
mid_channels = 4 | |
self.relu1 = nn.ReLU() | |
self.conv1 = nn.Conv2d(channels, mid_channels, kernel_size=1, padding=0) | |
self.conv2 = nn.Conv2d(mid_channels, 1, kernel_size=3, padding=1, bias=False) | |
self.sigmoid = nn.Sigmoid() | |
nn.init.constant_(self.conv1.bias, 0) | |
def forward(self, x): | |
y = self.relu1(x) | |
y = self.conv1(y) | |
y = self.conv2(y) | |
y = self.sigmoid(y) | |
return x * y | |
class CDCM(nn.Module): | |
""" | |
Compact Dilation Convolution based Module | |
""" | |
def __init__(self, in_channels, out_channels): | |
super(CDCM, self).__init__() | |
self.relu1 = nn.ReLU() | |
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0) | |
self.conv2_1 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=5, padding=5, bias=False) | |
self.conv2_2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=7, padding=7, bias=False) | |
self.conv2_3 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=9, padding=9, bias=False) | |
self.conv2_4 = nn.Conv2d(out_channels, out_channels, kernel_size=3, dilation=11, padding=11, bias=False) | |
nn.init.constant_(self.conv1.bias, 0) | |
def forward(self, x): | |
x = self.relu1(x) | |
x = self.conv1(x) | |
x1 = self.conv2_1(x) | |
x2 = self.conv2_2(x) | |
x3 = self.conv2_3(x) | |
x4 = self.conv2_4(x) | |
return x1 + x2 + x3 + x4 | |
class MapReduce(nn.Module): | |
""" | |
Reduce feature maps into a single edge map | |
""" | |
def __init__(self, channels): | |
super(MapReduce, self).__init__() | |
self.conv = nn.Conv2d(channels, 1, kernel_size=1, padding=0) | |
nn.init.constant_(self.conv.bias, 0) | |
def forward(self, x): | |
return self.conv(x) | |
class PDCBlock(nn.Module): | |
def __init__(self, pdc, inplane, ouplane, stride=1): | |
super(PDCBlock, self).__init__() | |
self.stride=stride | |
self.stride=stride | |
if self.stride > 1: | |
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) | |
self.shortcut = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0) | |
self.conv1 = Conv2d(pdc, inplane, inplane, kernel_size=3, padding=1, groups=inplane, bias=False) | |
self.relu2 = nn.ReLU() | |
self.conv2 = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0, bias=False) | |
def forward(self, x): | |
if self.stride > 1: | |
x = self.pool(x) | |
y = self.conv1(x) | |
y = self.relu2(y) | |
y = self.conv2(y) | |
if self.stride > 1: | |
x = self.shortcut(x) | |
y = y + x | |
return y | |
class PDCBlock_converted(nn.Module): | |
""" | |
CPDC, APDC can be converted to vanilla 3x3 convolution | |
RPDC can be converted to vanilla 5x5 convolution | |
""" | |
def __init__(self, pdc, inplane, ouplane, stride=1): | |
super(PDCBlock_converted, self).__init__() | |
self.stride=stride | |
if self.stride > 1: | |
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) | |
self.shortcut = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0) | |
if pdc == 'rd': | |
self.conv1 = nn.Conv2d(inplane, inplane, kernel_size=5, padding=2, groups=inplane, bias=False) | |
else: | |
self.conv1 = nn.Conv2d(inplane, inplane, kernel_size=3, padding=1, groups=inplane, bias=False) | |
self.relu2 = nn.ReLU() | |
self.conv2 = nn.Conv2d(inplane, ouplane, kernel_size=1, padding=0, bias=False) | |
def forward(self, x): | |
if self.stride > 1: | |
x = self.pool(x) | |
y = self.conv1(x) | |
y = self.relu2(y) | |
y = self.conv2(y) | |
if self.stride > 1: | |
x = self.shortcut(x) | |
y = y + x | |
return y | |
class PiDiNet(nn.Module): | |
def __init__(self, inplane, pdcs, dil=None, sa=False, convert=False): | |
super(PiDiNet, self).__init__() | |
self.sa = sa | |
if dil is not None: | |
assert isinstance(dil, int), 'dil should be an int' | |
self.dil = dil | |
self.fuseplanes = [] | |
self.inplane = inplane | |
if convert: | |
if pdcs[0] == 'rd': | |
init_kernel_size = 5 | |
init_padding = 2 | |
else: | |
init_kernel_size = 3 | |
init_padding = 1 | |
self.init_block = nn.Conv2d(3, self.inplane, | |
kernel_size=init_kernel_size, padding=init_padding, bias=False) | |
block_class = PDCBlock_converted | |
else: | |
self.init_block = Conv2d(pdcs[0], 3, self.inplane, kernel_size=3, padding=1) | |
block_class = PDCBlock | |
self.block1_1 = block_class(pdcs[1], self.inplane, self.inplane) | |
self.block1_2 = block_class(pdcs[2], self.inplane, self.inplane) | |
self.block1_3 = block_class(pdcs[3], self.inplane, self.inplane) | |
self.fuseplanes.append(self.inplane) # C | |
inplane = self.inplane | |
self.inplane = self.inplane * 2 | |
self.block2_1 = block_class(pdcs[4], inplane, self.inplane, stride=2) | |
self.block2_2 = block_class(pdcs[5], self.inplane, self.inplane) | |
self.block2_3 = block_class(pdcs[6], self.inplane, self.inplane) | |
self.block2_4 = block_class(pdcs[7], self.inplane, self.inplane) | |
self.fuseplanes.append(self.inplane) # 2C | |
inplane = self.inplane | |
self.inplane = self.inplane * 2 | |
self.block3_1 = block_class(pdcs[8], inplane, self.inplane, stride=2) | |
self.block3_2 = block_class(pdcs[9], self.inplane, self.inplane) | |
self.block3_3 = block_class(pdcs[10], self.inplane, self.inplane) | |
self.block3_4 = block_class(pdcs[11], self.inplane, self.inplane) | |
self.fuseplanes.append(self.inplane) # 4C | |
self.block4_1 = block_class(pdcs[12], self.inplane, self.inplane, stride=2) | |
self.block4_2 = block_class(pdcs[13], self.inplane, self.inplane) | |
self.block4_3 = block_class(pdcs[14], self.inplane, self.inplane) | |
self.block4_4 = block_class(pdcs[15], self.inplane, self.inplane) | |
self.fuseplanes.append(self.inplane) # 4C | |
self.conv_reduces = nn.ModuleList() | |
if self.sa and self.dil is not None: | |
self.attentions = nn.ModuleList() | |
self.dilations = nn.ModuleList() | |
for i in range(4): | |
self.dilations.append(CDCM(self.fuseplanes[i], self.dil)) | |
self.attentions.append(CSAM(self.dil)) | |
self.conv_reduces.append(MapReduce(self.dil)) | |
elif self.sa: | |
self.attentions = nn.ModuleList() | |
for i in range(4): | |
self.attentions.append(CSAM(self.fuseplanes[i])) | |
self.conv_reduces.append(MapReduce(self.fuseplanes[i])) | |
elif self.dil is not None: | |
self.dilations = nn.ModuleList() | |
for i in range(4): | |
self.dilations.append(CDCM(self.fuseplanes[i], self.dil)) | |
self.conv_reduces.append(MapReduce(self.dil)) | |
else: | |
for i in range(4): | |
self.conv_reduces.append(MapReduce(self.fuseplanes[i])) | |
self.classifier = nn.Conv2d(4, 1, kernel_size=1) # has bias | |
nn.init.constant_(self.classifier.weight, 0.25) | |
nn.init.constant_(self.classifier.bias, 0) | |
# print('initialization done') | |
def get_weights(self): | |
conv_weights = [] | |
bn_weights = [] | |
relu_weights = [] | |
for pname, p in self.named_parameters(): | |
if 'bn' in pname: | |
bn_weights.append(p) | |
elif 'relu' in pname: | |
relu_weights.append(p) | |
else: | |
conv_weights.append(p) | |
return conv_weights, bn_weights, relu_weights | |
def forward(self, x): | |
H, W = x.size()[2:] | |
x = self.init_block(x) | |
x1 = self.block1_1(x) | |
x1 = self.block1_2(x1) | |
x1 = self.block1_3(x1) | |
x2 = self.block2_1(x1) | |
x2 = self.block2_2(x2) | |
x2 = self.block2_3(x2) | |
x2 = self.block2_4(x2) | |
x3 = self.block3_1(x2) | |
x3 = self.block3_2(x3) | |
x3 = self.block3_3(x3) | |
x3 = self.block3_4(x3) | |
x4 = self.block4_1(x3) | |
x4 = self.block4_2(x4) | |
x4 = self.block4_3(x4) | |
x4 = self.block4_4(x4) | |
x_fuses = [] | |
if self.sa and self.dil is not None: | |
for i, xi in enumerate([x1, x2, x3, x4]): | |
x_fuses.append(self.attentions[i](self.dilations[i](xi))) | |
elif self.sa: | |
for i, xi in enumerate([x1, x2, x3, x4]): | |
x_fuses.append(self.attentions[i](xi)) | |
elif self.dil is not None: | |
for i, xi in enumerate([x1, x2, x3, x4]): | |
x_fuses.append(self.dilations[i](xi)) | |
else: | |
x_fuses = [x1, x2, x3, x4] | |
e1 = self.conv_reduces[0](x_fuses[0]) | |
e1 = F.interpolate(e1, (H, W), mode="bilinear", align_corners=False) | |
e2 = self.conv_reduces[1](x_fuses[1]) | |
e2 = F.interpolate(e2, (H, W), mode="bilinear", align_corners=False) | |
e3 = self.conv_reduces[2](x_fuses[2]) | |
e3 = F.interpolate(e3, (H, W), mode="bilinear", align_corners=False) | |
e4 = self.conv_reduces[3](x_fuses[3]) | |
e4 = F.interpolate(e4, (H, W), mode="bilinear", align_corners=False) | |
outputs = [e1, e2, e3, e4] | |
output = self.classifier(torch.cat(outputs, dim=1)) | |
#if not self.training: | |
# return torch.sigmoid(output) | |
outputs.append(output) | |
outputs = [torch.sigmoid(r) for r in outputs] | |
return outputs | |
def config_model(model): | |
model_options = list(nets.keys()) | |
assert model in model_options, \ | |
'unrecognized model, please choose from %s' % str(model_options) | |
# print(str(nets[model])) | |
pdcs = [] | |
for i in range(16): | |
layer_name = 'layer%d' % i | |
op = nets[model][layer_name] | |
pdcs.append(createConvFunc(op)) | |
return pdcs | |
def pidinet(): | |
pdcs = config_model('carv4') | |
dil = 24 #if args.dil else None | |
return PiDiNet(60, pdcs, dil=dil, sa=True) | |
if __name__ == '__main__': | |
model = pidinet() | |
ckp = torch.load('table5_pidinet.pth')['state_dict'] | |
model.load_state_dict({k.replace('module.',''):v for k, v in ckp.items()}) | |
im = cv2.imread('examples/test_my/cat_v4.png') | |
im = img2tensor(im).unsqueeze(0)/255. | |
res = model(im)[-1] | |
res = res>0.5 | |
res = res.float() | |
res = (res[0,0].cpu().data.numpy()*255.).astype(np.uint8) | |
print(res.shape) | |
cv2.imwrite('edge.png', res) | |