feishen29 commited on
Commit
29d49a9
1 Parent(s): 9c90ac7

Upload 179 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. controlnet_aux/__init__.py +20 -0
  2. controlnet_aux/anyline/__init__.py +118 -0
  3. controlnet_aux/canny/__init__.py +36 -0
  4. controlnet_aux/dwpose/__init__.py +91 -0
  5. controlnet_aux/dwpose/dwpose_config/__init__.py +0 -0
  6. controlnet_aux/dwpose/dwpose_config/dwpose-l_384x288.py +257 -0
  7. controlnet_aux/dwpose/util.py +303 -0
  8. controlnet_aux/dwpose/wholebody.py +121 -0
  9. controlnet_aux/dwpose/yolox_config/__init__.py +0 -0
  10. controlnet_aux/dwpose/yolox_config/yolox_l_8xb8-300e_coco.py +245 -0
  11. controlnet_aux/hed/__init__.py +129 -0
  12. controlnet_aux/leres/__init__.py +118 -0
  13. controlnet_aux/leres/leres/LICENSE +23 -0
  14. controlnet_aux/leres/leres/Resnet.py +199 -0
  15. controlnet_aux/leres/leres/Resnext_torch.py +237 -0
  16. controlnet_aux/leres/leres/__init__.py +0 -0
  17. controlnet_aux/leres/leres/depthmap.py +548 -0
  18. controlnet_aux/leres/leres/multi_depth_model_woauxi.py +35 -0
  19. controlnet_aux/leres/leres/net_tools.py +54 -0
  20. controlnet_aux/leres/leres/network_auxi.py +417 -0
  21. controlnet_aux/leres/pix2pix/LICENSE +19 -0
  22. controlnet_aux/leres/pix2pix/__init__.py +0 -0
  23. controlnet_aux/leres/pix2pix/models/__init__.py +67 -0
  24. controlnet_aux/leres/pix2pix/models/base_model.py +244 -0
  25. controlnet_aux/leres/pix2pix/models/base_model_hg.py +58 -0
  26. controlnet_aux/leres/pix2pix/models/networks.py +623 -0
  27. controlnet_aux/leres/pix2pix/models/pix2pix4depth_model.py +155 -0
  28. controlnet_aux/leres/pix2pix/options/__init__.py +1 -0
  29. controlnet_aux/leres/pix2pix/options/base_options.py +156 -0
  30. controlnet_aux/leres/pix2pix/options/test_options.py +22 -0
  31. controlnet_aux/leres/pix2pix/util/__init__.py +1 -0
  32. controlnet_aux/leres/pix2pix/util/util.py +105 -0
  33. controlnet_aux/lineart/LICENSE +21 -0
  34. controlnet_aux/lineart/__init__.py +167 -0
  35. controlnet_aux/lineart_anime/LICENSE +21 -0
  36. controlnet_aux/lineart_anime/__init__.py +189 -0
  37. controlnet_aux/lineart_standard/__init__.py +47 -0
  38. controlnet_aux/mediapipe_face/__init__.py +53 -0
  39. controlnet_aux/mediapipe_face/mediapipe_face_common.py +164 -0
  40. controlnet_aux/midas/LICENSE +21 -0
  41. controlnet_aux/midas/__init__.py +95 -0
  42. controlnet_aux/midas/api.py +169 -0
  43. controlnet_aux/midas/midas/__init__.py +0 -0
  44. controlnet_aux/midas/midas/base_model.py +16 -0
  45. controlnet_aux/midas/midas/blocks.py +342 -0
  46. controlnet_aux/midas/midas/dpt_depth.py +109 -0
  47. controlnet_aux/midas/midas/midas_net.py +76 -0
  48. controlnet_aux/midas/midas/midas_net_custom.py +128 -0
  49. controlnet_aux/midas/midas/transforms.py +234 -0
  50. controlnet_aux/midas/midas/vit.py +491 -0
controlnet_aux/__init__.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __version__ = "0.0.9"
2
+
3
+ from .anyline import AnylineDetector
4
+ from .canny import CannyDetector
5
+ from .dwpose import DWposeDetector
6
+ from .hed import HEDdetector
7
+ from .leres import LeresDetector
8
+ from .lineart import LineartDetector
9
+ from .lineart_anime import LineartAnimeDetector
10
+ from .lineart_standard import LineartStandardDetector
11
+ from .mediapipe_face import MediapipeFaceDetector
12
+ from .midas import MidasDetector
13
+ from .mlsd import MLSDdetector
14
+ from .normalbae import NormalBaeDetector
15
+ from .open_pose import OpenposeDetector
16
+ from .pidi import PidiNetDetector
17
+ from .segment_anything import SamDetector
18
+ from .shuffle import ContentShuffleDetector
19
+ from .teed import TEEDdetector
20
+ from .zoe import ZoeDetector
controlnet_aux/anyline/__init__.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # code based in https://github.com/TheMistoAI/ComfyUI-Anyline/blob/main/anyline.py
2
+ import os
3
+
4
+ import cv2
5
+ import numpy as np
6
+ import torch
7
+ from einops import rearrange
8
+ from huggingface_hub import hf_hub_download
9
+ from PIL import Image
10
+ from skimage import morphology
11
+
12
+ from ..teed.ted import TED
13
+ from ..util import HWC3, resize_image, safe_step
14
+
15
+
16
+ class AnylineDetector:
17
+ def __init__(self, model):
18
+ self.model = model
19
+
20
+ @classmethod
21
+ def from_pretrained(cls, pretrained_model_or_path, filename=None, subfolder=None):
22
+ if os.path.isdir(pretrained_model_or_path):
23
+ model_path = os.path.join(pretrained_model_or_path, filename)
24
+ else:
25
+ model_path = hf_hub_download(
26
+ pretrained_model_or_path, filename, subfolder=subfolder
27
+ )
28
+
29
+ model = TED()
30
+ model.load_state_dict(torch.load(model_path, map_location="cpu"))
31
+
32
+ return cls(model)
33
+
34
+ def to(self, device):
35
+ self.model.to(device)
36
+ return self
37
+
38
+ def __call__(
39
+ self,
40
+ input_image,
41
+ detect_resolution=1280,
42
+ guassian_sigma=2.0,
43
+ intensity_threshold=3,
44
+ output_type="pil",
45
+ ):
46
+ device = next(iter(self.model.parameters())).device
47
+
48
+ if not isinstance(input_image, np.ndarray):
49
+ input_image = np.array(input_image, dtype=np.uint8)
50
+ output_type = output_type or "pil"
51
+ else:
52
+ output_type = output_type or "np"
53
+
54
+ original_height, original_width, _ = input_image.shape
55
+
56
+ input_image = HWC3(input_image)
57
+ input_image = resize_image(input_image, detect_resolution)
58
+
59
+ assert input_image.ndim == 3
60
+ height, width, _ = input_image.shape
61
+ with torch.no_grad():
62
+ image_teed = torch.from_numpy(input_image.copy()).float().to(device)
63
+ image_teed = rearrange(image_teed, "h w c -> 1 c h w")
64
+ edges = self.model(image_teed)
65
+ edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
66
+ edges = [
67
+ cv2.resize(e, (width, height), interpolation=cv2.INTER_LINEAR)
68
+ for e in edges
69
+ ]
70
+ edges = np.stack(edges, axis=2)
71
+ edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
72
+ edge = safe_step(edge, 2)
73
+ edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
74
+
75
+ mteed_result = edge
76
+ mteed_result = HWC3(mteed_result)
77
+
78
+ x = input_image.astype(np.float32)
79
+ g = cv2.GaussianBlur(x, (0, 0), guassian_sigma)
80
+ intensity = np.min(g - x, axis=2).clip(0, 255)
81
+ intensity /= max(16, np.median(intensity[intensity > intensity_threshold]))
82
+ intensity *= 127
83
+ lineart_result = intensity.clip(0, 255).astype(np.uint8)
84
+
85
+ lineart_result = HWC3(lineart_result)
86
+
87
+ lineart_result = self.get_intensity_mask(
88
+ lineart_result, lower_bound=0, upper_bound=255
89
+ )
90
+
91
+ cleaned = morphology.remove_small_objects(
92
+ lineart_result.astype(bool), min_size=36, connectivity=1
93
+ )
94
+ lineart_result = lineart_result * cleaned
95
+ final_result = self.combine_layers(mteed_result, lineart_result)
96
+
97
+ final_result = cv2.resize(
98
+ final_result,
99
+ (original_width, original_height),
100
+ interpolation=cv2.INTER_LINEAR,
101
+ )
102
+
103
+ if output_type == "pil":
104
+ final_result = Image.fromarray(final_result)
105
+
106
+ return final_result
107
+
108
+ def get_intensity_mask(self, image_array, lower_bound, upper_bound):
109
+ mask = image_array[:, :, 0]
110
+ mask = np.where((mask >= lower_bound) & (mask <= upper_bound), mask, 0)
111
+ mask = np.expand_dims(mask, 2).repeat(3, axis=2)
112
+ return mask
113
+
114
+ def combine_layers(self, base_layer, top_layer):
115
+ mask = top_layer.astype(bool)
116
+ temp = 1 - (1 - top_layer) * (1 - base_layer)
117
+ result = base_layer * (~mask) + temp * mask
118
+ return result
controlnet_aux/canny/__init__.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+ import cv2
3
+ import numpy as np
4
+ from PIL import Image
5
+ from ..util import HWC3, resize_image
6
+
7
+ class CannyDetector:
8
+ def __call__(self, input_image=None, low_threshold=100, high_threshold=200, detect_resolution=512, image_resolution=512, output_type=None, **kwargs):
9
+ if "img" in kwargs:
10
+ warnings.warn("img is deprecated, please use `input_image=...` instead.", DeprecationWarning)
11
+ input_image = kwargs.pop("img")
12
+
13
+ if input_image is None:
14
+ raise ValueError("input_image must be defined.")
15
+
16
+ if not isinstance(input_image, np.ndarray):
17
+ input_image = np.array(input_image, dtype=np.uint8)
18
+ output_type = output_type or "pil"
19
+ else:
20
+ output_type = output_type or "np"
21
+
22
+ input_image = HWC3(input_image)
23
+ input_image = resize_image(input_image, detect_resolution)
24
+
25
+ detected_map = cv2.Canny(input_image, low_threshold, high_threshold)
26
+ detected_map = HWC3(detected_map)
27
+
28
+ img = resize_image(input_image, image_resolution)
29
+ H, W, C = img.shape
30
+
31
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
32
+
33
+ if output_type == "pil":
34
+ detected_map = Image.fromarray(detected_map)
35
+
36
+ return detected_map
controlnet_aux/dwpose/__init__.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Openpose
2
+ # Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
3
+ # 2nd Edited by https://github.com/Hzzone/pytorch-openpose
4
+ # 3rd Edited by ControlNet
5
+ # 4th Edited by ControlNet (added face and correct hands)
6
+
7
+ import os
8
+ os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
9
+
10
+ import cv2
11
+ import torch
12
+ import numpy as np
13
+ from PIL import Image
14
+
15
+ from ..util import HWC3, resize_image
16
+ from . import util
17
+
18
+
19
+ def draw_pose(pose, H, W):
20
+ bodies = pose['bodies']
21
+ faces = pose['faces']
22
+ hands = pose['hands']
23
+ candidate = bodies['candidate']
24
+ subset = bodies['subset']
25
+
26
+ canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
27
+ canvas = util.draw_bodypose(canvas, candidate, subset)
28
+ canvas = util.draw_handpose(canvas, hands)
29
+ canvas = util.draw_facepose(canvas, faces)
30
+
31
+ return canvas
32
+
33
+ class DWposeDetector:
34
+ def __init__(self, det_config=None, det_ckpt=None, pose_config=None, pose_ckpt=None, device="cpu"):
35
+ from .wholebody import Wholebody
36
+
37
+ self.pose_estimation = Wholebody(det_config, det_ckpt, pose_config, pose_ckpt, device)
38
+
39
+ def to(self, device):
40
+ self.pose_estimation.to(device)
41
+ return self
42
+
43
+ def __call__(self, input_image, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs):
44
+
45
+ input_image = cv2.cvtColor(np.array(input_image, dtype=np.uint8), cv2.COLOR_RGB2BGR)
46
+
47
+ input_image = HWC3(input_image)
48
+ input_image = resize_image(input_image, detect_resolution)
49
+ H, W, C = input_image.shape
50
+
51
+ with torch.no_grad():
52
+ candidate, subset = self.pose_estimation(input_image)
53
+ nums, keys, locs = candidate.shape
54
+ candidate[..., 0] /= float(W)
55
+ candidate[..., 1] /= float(H)
56
+ body = candidate[:,:18].copy()
57
+ body = body.reshape(nums*18, locs)
58
+ score = subset[:,:18]
59
+
60
+ for i in range(len(score)):
61
+ for j in range(len(score[i])):
62
+ if score[i][j] > 0.3:
63
+ score[i][j] = int(18*i+j)
64
+ else:
65
+ score[i][j] = -1
66
+
67
+ un_visible = subset<0.3
68
+ candidate[un_visible] = -1
69
+
70
+ foot = candidate[:,18:24]
71
+
72
+ faces = candidate[:,24:92]
73
+
74
+ hands = candidate[:,92:113]
75
+ hands = np.vstack([hands, candidate[:,113:]])
76
+
77
+ bodies = dict(candidate=body, subset=score)
78
+ pose = dict(bodies=bodies, hands=hands, faces=faces)
79
+
80
+ detected_map = draw_pose(pose, H, W)
81
+ detected_map = HWC3(detected_map)
82
+
83
+ img = resize_image(input_image, image_resolution)
84
+ H, W, C = img.shape
85
+
86
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
87
+
88
+ if output_type == "pil":
89
+ detected_map = Image.fromarray(detected_map)
90
+
91
+ return detected_map
controlnet_aux/dwpose/dwpose_config/__init__.py ADDED
File without changes
controlnet_aux/dwpose/dwpose_config/dwpose-l_384x288.py ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # runtime
2
+ max_epochs = 270
3
+ stage2_num_epochs = 30
4
+ base_lr = 4e-3
5
+
6
+ train_cfg = dict(max_epochs=max_epochs, val_interval=10)
7
+ randomness = dict(seed=21)
8
+
9
+ # optimizer
10
+ optim_wrapper = dict(
11
+ type='OptimWrapper',
12
+ optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
13
+ paramwise_cfg=dict(
14
+ norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
15
+
16
+ # learning rate
17
+ param_scheduler = [
18
+ dict(
19
+ type='LinearLR',
20
+ start_factor=1.0e-5,
21
+ by_epoch=False,
22
+ begin=0,
23
+ end=1000),
24
+ dict(
25
+ # use cosine lr from 150 to 300 epoch
26
+ type='CosineAnnealingLR',
27
+ eta_min=base_lr * 0.05,
28
+ begin=max_epochs // 2,
29
+ end=max_epochs,
30
+ T_max=max_epochs // 2,
31
+ by_epoch=True,
32
+ convert_to_iter_based=True),
33
+ ]
34
+
35
+ # automatically scaling LR based on the actual training batch size
36
+ auto_scale_lr = dict(base_batch_size=512)
37
+
38
+ # codec settings
39
+ codec = dict(
40
+ type='SimCCLabel',
41
+ input_size=(288, 384),
42
+ sigma=(6., 6.93),
43
+ simcc_split_ratio=2.0,
44
+ normalize=False,
45
+ use_dark=False)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='TopdownPoseEstimator',
50
+ data_preprocessor=dict(
51
+ type='PoseDataPreprocessor',
52
+ mean=[123.675, 116.28, 103.53],
53
+ std=[58.395, 57.12, 57.375],
54
+ bgr_to_rgb=True),
55
+ backbone=dict(
56
+ _scope_='mmdet',
57
+ type='CSPNeXt',
58
+ arch='P5',
59
+ expand_ratio=0.5,
60
+ deepen_factor=1.,
61
+ widen_factor=1.,
62
+ out_indices=(4, ),
63
+ channel_attention=True,
64
+ norm_cfg=dict(type='SyncBN'),
65
+ act_cfg=dict(type='SiLU'),
66
+ init_cfg=dict(
67
+ type='Pretrained',
68
+ prefix='backbone.',
69
+ checkpoint='https://download.openmmlab.com/mmpose/v1/projects/'
70
+ 'rtmpose/cspnext-l_udp-aic-coco_210e-256x192-273b7631_20230130.pth' # noqa
71
+ )),
72
+ head=dict(
73
+ type='RTMCCHead',
74
+ in_channels=1024,
75
+ out_channels=133,
76
+ input_size=codec['input_size'],
77
+ in_featuremap_size=(9, 12),
78
+ simcc_split_ratio=codec['simcc_split_ratio'],
79
+ final_layer_kernel_size=7,
80
+ gau_cfg=dict(
81
+ hidden_dims=256,
82
+ s=128,
83
+ expansion_factor=2,
84
+ dropout_rate=0.,
85
+ drop_path=0.,
86
+ act_fn='SiLU',
87
+ use_rel_bias=False,
88
+ pos_enc=False),
89
+ loss=dict(
90
+ type='KLDiscretLoss',
91
+ use_target_weight=True,
92
+ beta=10.,
93
+ label_softmax=True),
94
+ decoder=codec),
95
+ test_cfg=dict(flip_test=True, ))
96
+
97
+ # base dataset settings
98
+ dataset_type = 'CocoWholeBodyDataset'
99
+ data_mode = 'topdown'
100
+ data_root = '/data/'
101
+
102
+ backend_args = dict(backend='local')
103
+ # backend_args = dict(
104
+ # backend='petrel',
105
+ # path_mapping=dict({
106
+ # f'{data_root}': 's3://openmmlab/datasets/detection/coco/',
107
+ # f'{data_root}': 's3://openmmlab/datasets/detection/coco/'
108
+ # }))
109
+
110
+ # pipelines
111
+ train_pipeline = [
112
+ dict(type='LoadImage', backend_args=backend_args),
113
+ dict(type='GetBBoxCenterScale'),
114
+ dict(type='RandomFlip', direction='horizontal'),
115
+ dict(type='RandomHalfBody'),
116
+ dict(
117
+ type='RandomBBoxTransform', scale_factor=[0.6, 1.4], rotate_factor=80),
118
+ dict(type='TopdownAffine', input_size=codec['input_size']),
119
+ dict(type='mmdet.YOLOXHSVRandomAug'),
120
+ dict(
121
+ type='Albumentation',
122
+ transforms=[
123
+ dict(type='Blur', p=0.1),
124
+ dict(type='MedianBlur', p=0.1),
125
+ dict(
126
+ type='CoarseDropout',
127
+ max_holes=1,
128
+ max_height=0.4,
129
+ max_width=0.4,
130
+ min_holes=1,
131
+ min_height=0.2,
132
+ min_width=0.2,
133
+ p=1.0),
134
+ ]),
135
+ dict(type='GenerateTarget', encoder=codec),
136
+ dict(type='PackPoseInputs')
137
+ ]
138
+ val_pipeline = [
139
+ dict(type='LoadImage', backend_args=backend_args),
140
+ dict(type='GetBBoxCenterScale'),
141
+ dict(type='TopdownAffine', input_size=codec['input_size']),
142
+ dict(type='PackPoseInputs')
143
+ ]
144
+
145
+ train_pipeline_stage2 = [
146
+ dict(type='LoadImage', backend_args=backend_args),
147
+ dict(type='GetBBoxCenterScale'),
148
+ dict(type='RandomFlip', direction='horizontal'),
149
+ dict(type='RandomHalfBody'),
150
+ dict(
151
+ type='RandomBBoxTransform',
152
+ shift_factor=0.,
153
+ scale_factor=[0.75, 1.25],
154
+ rotate_factor=60),
155
+ dict(type='TopdownAffine', input_size=codec['input_size']),
156
+ dict(type='mmdet.YOLOXHSVRandomAug'),
157
+ dict(
158
+ type='Albumentation',
159
+ transforms=[
160
+ dict(type='Blur', p=0.1),
161
+ dict(type='MedianBlur', p=0.1),
162
+ dict(
163
+ type='CoarseDropout',
164
+ max_holes=1,
165
+ max_height=0.4,
166
+ max_width=0.4,
167
+ min_holes=1,
168
+ min_height=0.2,
169
+ min_width=0.2,
170
+ p=0.5),
171
+ ]),
172
+ dict(type='GenerateTarget', encoder=codec),
173
+ dict(type='PackPoseInputs')
174
+ ]
175
+
176
+ datasets = []
177
+ dataset_coco=dict(
178
+ type=dataset_type,
179
+ data_root=data_root,
180
+ data_mode=data_mode,
181
+ ann_file='coco/annotations/coco_wholebody_train_v1.0.json',
182
+ data_prefix=dict(img='coco/train2017/'),
183
+ pipeline=[],
184
+ )
185
+ datasets.append(dataset_coco)
186
+
187
+ scene = ['Magic_show', 'Entertainment', 'ConductMusic', 'Online_class',
188
+ 'TalkShow', 'Speech', 'Fitness', 'Interview', 'Olympic', 'TVShow',
189
+ 'Singing', 'SignLanguage', 'Movie', 'LiveVlog', 'VideoConference']
190
+
191
+ for i in range(len(scene)):
192
+ datasets.append(
193
+ dict(
194
+ type=dataset_type,
195
+ data_root=data_root,
196
+ data_mode=data_mode,
197
+ ann_file='UBody/annotations/'+scene[i]+'/keypoint_annotation.json',
198
+ data_prefix=dict(img='UBody/images/'+scene[i]+'/'),
199
+ pipeline=[],
200
+ )
201
+ )
202
+
203
+ # data loaders
204
+ train_dataloader = dict(
205
+ batch_size=32,
206
+ num_workers=10,
207
+ persistent_workers=True,
208
+ sampler=dict(type='DefaultSampler', shuffle=True),
209
+ dataset=dict(
210
+ type='CombinedDataset',
211
+ metainfo=dict(from_file='configs/_base_/datasets/coco_wholebody.py'),
212
+ datasets=datasets,
213
+ pipeline=train_pipeline,
214
+ test_mode=False,
215
+ ))
216
+ val_dataloader = dict(
217
+ batch_size=32,
218
+ num_workers=10,
219
+ persistent_workers=True,
220
+ drop_last=False,
221
+ sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
222
+ dataset=dict(
223
+ type=dataset_type,
224
+ data_root=data_root,
225
+ data_mode=data_mode,
226
+ ann_file='coco/annotations/coco_wholebody_val_v1.0.json',
227
+ bbox_file=f'{data_root}coco/person_detection_results/'
228
+ 'COCO_val2017_detections_AP_H_56_person.json',
229
+ data_prefix=dict(img='coco/val2017/'),
230
+ test_mode=True,
231
+ pipeline=val_pipeline,
232
+ ))
233
+ test_dataloader = val_dataloader
234
+
235
+ # hooks
236
+ default_hooks = dict(
237
+ checkpoint=dict(
238
+ save_best='coco-wholebody/AP', rule='greater', max_keep_ckpts=1))
239
+
240
+ custom_hooks = [
241
+ dict(
242
+ type='EMAHook',
243
+ ema_type='ExpMomentumEMA',
244
+ momentum=0.0002,
245
+ update_buffers=True,
246
+ priority=49),
247
+ dict(
248
+ type='mmdet.PipelineSwitchHook',
249
+ switch_epoch=max_epochs - stage2_num_epochs,
250
+ switch_pipeline=train_pipeline_stage2)
251
+ ]
252
+
253
+ # evaluators
254
+ val_evaluator = dict(
255
+ type='CocoWholeBodyMetric',
256
+ ann_file=data_root + 'coco/annotations/coco_wholebody_val_v1.0.json')
257
+ test_evaluator = val_evaluator
controlnet_aux/dwpose/util.py ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import cv2
4
+
5
+
6
+ eps = 0.01
7
+
8
+
9
+ def smart_resize(x, s):
10
+ Ht, Wt = s
11
+ if x.ndim == 2:
12
+ Ho, Wo = x.shape
13
+ Co = 1
14
+ else:
15
+ Ho, Wo, Co = x.shape
16
+ if Co == 3 or Co == 1:
17
+ k = float(Ht + Wt) / float(Ho + Wo)
18
+ return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
19
+ else:
20
+ return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2)
21
+
22
+
23
+ def smart_resize_k(x, fx, fy):
24
+ if x.ndim == 2:
25
+ Ho, Wo = x.shape
26
+ Co = 1
27
+ else:
28
+ Ho, Wo, Co = x.shape
29
+ Ht, Wt = Ho * fy, Wo * fx
30
+ if Co == 3 or Co == 1:
31
+ k = float(Ht + Wt) / float(Ho + Wo)
32
+ return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
33
+ else:
34
+ return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2)
35
+
36
+
37
+ def padRightDownCorner(img, stride, padValue):
38
+ h = img.shape[0]
39
+ w = img.shape[1]
40
+
41
+ pad = 4 * [None]
42
+ pad[0] = 0 # up
43
+ pad[1] = 0 # left
44
+ pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
45
+ pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
46
+
47
+ img_padded = img
48
+ pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
49
+ img_padded = np.concatenate((pad_up, img_padded), axis=0)
50
+ pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
51
+ img_padded = np.concatenate((pad_left, img_padded), axis=1)
52
+ pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
53
+ img_padded = np.concatenate((img_padded, pad_down), axis=0)
54
+ pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
55
+ img_padded = np.concatenate((img_padded, pad_right), axis=1)
56
+
57
+ return img_padded, pad
58
+
59
+
60
+ def transfer(model, model_weights):
61
+ transfered_model_weights = {}
62
+ for weights_name in model.state_dict().keys():
63
+ transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
64
+ return transfered_model_weights
65
+
66
+
67
+ def draw_bodypose(canvas, candidate, subset):
68
+ H, W, C = canvas.shape
69
+ candidate = np.array(candidate)
70
+ subset = np.array(subset)
71
+
72
+ stickwidth = 4
73
+
74
+ limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
75
+ [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
76
+ [1, 16], [16, 18], [3, 17], [6, 18]]
77
+
78
+ colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
79
+ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
80
+ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
81
+
82
+ for i in range(17):
83
+ for n in range(len(subset)):
84
+ index = subset[n][np.array(limbSeq[i]) - 1]
85
+ if -1 in index:
86
+ continue
87
+ Y = candidate[index.astype(int), 0] * float(W)
88
+ X = candidate[index.astype(int), 1] * float(H)
89
+ mX = np.mean(X)
90
+ mY = np.mean(Y)
91
+ length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
92
+ angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
93
+ polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
94
+ cv2.fillConvexPoly(canvas, polygon, colors[i])
95
+
96
+ canvas = (canvas * 0.6).astype(np.uint8)
97
+
98
+ for i in range(18):
99
+ for n in range(len(subset)):
100
+ index = int(subset[n][i])
101
+ if index == -1:
102
+ continue
103
+ x, y = candidate[index][0:2]
104
+ x = int(x * W)
105
+ y = int(y * H)
106
+ cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
107
+
108
+ return canvas
109
+
110
+
111
+ def draw_handpose(canvas, all_hand_peaks):
112
+ import matplotlib
113
+
114
+ H, W, C = canvas.shape
115
+
116
+ edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
117
+ [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
118
+
119
+ # (person_number*2, 21, 2)
120
+ for i in range(len(all_hand_peaks)):
121
+ peaks = all_hand_peaks[i]
122
+ peaks = np.array(peaks)
123
+
124
+ for ie, e in enumerate(edges):
125
+
126
+ x1, y1 = peaks[e[0]]
127
+ x2, y2 = peaks[e[1]]
128
+
129
+ x1 = int(x1 * W)
130
+ y1 = int(y1 * H)
131
+ x2 = int(x2 * W)
132
+ y2 = int(y2 * H)
133
+ if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
134
+ cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2)
135
+
136
+ for _, keyponit in enumerate(peaks):
137
+ x, y = keyponit
138
+
139
+ x = int(x * W)
140
+ y = int(y * H)
141
+ if x > eps and y > eps:
142
+ cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
143
+ return canvas
144
+
145
+
146
+ def draw_facepose(canvas, all_lmks):
147
+ H, W, C = canvas.shape
148
+ for lmks in all_lmks:
149
+ lmks = np.array(lmks)
150
+ for lmk in lmks:
151
+ x, y = lmk
152
+ x = int(x * W)
153
+ y = int(y * H)
154
+ if x > eps and y > eps:
155
+ cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1)
156
+ return canvas
157
+
158
+
159
+ # detect hand according to body pose keypoints
160
+ # please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
161
+ def handDetect(candidate, subset, oriImg):
162
+ # right hand: wrist 4, elbow 3, shoulder 2
163
+ # left hand: wrist 7, elbow 6, shoulder 5
164
+ ratioWristElbow = 0.33
165
+ detect_result = []
166
+ image_height, image_width = oriImg.shape[0:2]
167
+ for person in subset.astype(int):
168
+ # if any of three not detected
169
+ has_left = np.sum(person[[5, 6, 7]] == -1) == 0
170
+ has_right = np.sum(person[[2, 3, 4]] == -1) == 0
171
+ if not (has_left or has_right):
172
+ continue
173
+ hands = []
174
+ #left hand
175
+ if has_left:
176
+ left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
177
+ x1, y1 = candidate[left_shoulder_index][:2]
178
+ x2, y2 = candidate[left_elbow_index][:2]
179
+ x3, y3 = candidate[left_wrist_index][:2]
180
+ hands.append([x1, y1, x2, y2, x3, y3, True])
181
+ # right hand
182
+ if has_right:
183
+ right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
184
+ x1, y1 = candidate[right_shoulder_index][:2]
185
+ x2, y2 = candidate[right_elbow_index][:2]
186
+ x3, y3 = candidate[right_wrist_index][:2]
187
+ hands.append([x1, y1, x2, y2, x3, y3, False])
188
+
189
+ for x1, y1, x2, y2, x3, y3, is_left in hands:
190
+ # pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
191
+ # handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
192
+ # handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
193
+ # const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
194
+ # const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
195
+ # handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
196
+ x = x3 + ratioWristElbow * (x3 - x2)
197
+ y = y3 + ratioWristElbow * (y3 - y2)
198
+ distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
199
+ distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
200
+ width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
201
+ # x-y refers to the center --> offset to topLeft point
202
+ # handRectangle.x -= handRectangle.width / 2.f;
203
+ # handRectangle.y -= handRectangle.height / 2.f;
204
+ x -= width / 2
205
+ y -= width / 2 # width = height
206
+ # overflow the image
207
+ if x < 0: x = 0
208
+ if y < 0: y = 0
209
+ width1 = width
210
+ width2 = width
211
+ if x + width > image_width: width1 = image_width - x
212
+ if y + width > image_height: width2 = image_height - y
213
+ width = min(width1, width2)
214
+ # the max hand box value is 20 pixels
215
+ if width >= 20:
216
+ detect_result.append([int(x), int(y), int(width), is_left])
217
+
218
+ '''
219
+ return value: [[x, y, w, True if left hand else False]].
220
+ width=height since the network require squared input.
221
+ x, y is the coordinate of top left
222
+ '''
223
+ return detect_result
224
+
225
+
226
+ # Written by Lvmin
227
+ def faceDetect(candidate, subset, oriImg):
228
+ # left right eye ear 14 15 16 17
229
+ detect_result = []
230
+ image_height, image_width = oriImg.shape[0:2]
231
+ for person in subset.astype(int):
232
+ has_head = person[0] > -1
233
+ if not has_head:
234
+ continue
235
+
236
+ has_left_eye = person[14] > -1
237
+ has_right_eye = person[15] > -1
238
+ has_left_ear = person[16] > -1
239
+ has_right_ear = person[17] > -1
240
+
241
+ if not (has_left_eye or has_right_eye or has_left_ear or has_right_ear):
242
+ continue
243
+
244
+ head, left_eye, right_eye, left_ear, right_ear = person[[0, 14, 15, 16, 17]]
245
+
246
+ width = 0.0
247
+ x0, y0 = candidate[head][:2]
248
+
249
+ if has_left_eye:
250
+ x1, y1 = candidate[left_eye][:2]
251
+ d = max(abs(x0 - x1), abs(y0 - y1))
252
+ width = max(width, d * 3.0)
253
+
254
+ if has_right_eye:
255
+ x1, y1 = candidate[right_eye][:2]
256
+ d = max(abs(x0 - x1), abs(y0 - y1))
257
+ width = max(width, d * 3.0)
258
+
259
+ if has_left_ear:
260
+ x1, y1 = candidate[left_ear][:2]
261
+ d = max(abs(x0 - x1), abs(y0 - y1))
262
+ width = max(width, d * 1.5)
263
+
264
+ if has_right_ear:
265
+ x1, y1 = candidate[right_ear][:2]
266
+ d = max(abs(x0 - x1), abs(y0 - y1))
267
+ width = max(width, d * 1.5)
268
+
269
+ x, y = x0, y0
270
+
271
+ x -= width
272
+ y -= width
273
+
274
+ if x < 0:
275
+ x = 0
276
+
277
+ if y < 0:
278
+ y = 0
279
+
280
+ width1 = width * 2
281
+ width2 = width * 2
282
+
283
+ if x + width > image_width:
284
+ width1 = image_width - x
285
+
286
+ if y + width > image_height:
287
+ width2 = image_height - y
288
+
289
+ width = min(width1, width2)
290
+
291
+ if width >= 20:
292
+ detect_result.append([int(x), int(y), int(width)])
293
+
294
+ return detect_result
295
+
296
+
297
+ # get max index of 2d array
298
+ def npmax(array):
299
+ arrayindex = array.argmax(1)
300
+ arrayvalue = array.max(1)
301
+ i = arrayvalue.argmax()
302
+ j = arrayindex[i]
303
+ return i, j
controlnet_aux/dwpose/wholebody.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import os
3
+ import numpy as np
4
+ import warnings
5
+
6
+ try:
7
+ import mmcv
8
+ except ImportError:
9
+ warnings.warn(
10
+ "The module 'mmcv' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmcv>=2.0.1'"
11
+ )
12
+
13
+ try:
14
+ from mmpose.apis import inference_topdown
15
+ from mmpose.apis import init_model as init_pose_estimator
16
+ from mmpose.evaluation.functional import nms
17
+ from mmpose.utils import adapt_mmdet_pipeline
18
+ from mmpose.structures import merge_data_samples
19
+ except ImportError:
20
+ warnings.warn(
21
+ "The module 'mmpose' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmpose>=1.1.0'"
22
+ )
23
+
24
+ try:
25
+ from mmdet.apis import inference_detector, init_detector
26
+ except ImportError:
27
+ warnings.warn(
28
+ "The module 'mmdet' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmdet>=3.1.0'"
29
+ )
30
+
31
+
32
+ class Wholebody:
33
+ def __init__(self,
34
+ det_config=None, det_ckpt=None,
35
+ pose_config=None, pose_ckpt=None,
36
+ device="cpu"):
37
+
38
+ if det_config is None:
39
+ det_config = os.path.join(os.path.dirname(__file__), "yolox_config/yolox_l_8xb8-300e_coco.py")
40
+
41
+ if pose_config is None:
42
+ pose_config = os.path.join(os.path.dirname(__file__), "dwpose_config/dwpose-l_384x288.py")
43
+
44
+ if det_ckpt is None:
45
+ det_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth'
46
+
47
+ if pose_ckpt is None:
48
+ pose_ckpt = "https://huggingface.co/wanghaofan/dw-ll_ucoco_384/resolve/main/dw-ll_ucoco_384.pth"
49
+
50
+ # build detector
51
+ self.detector = init_detector(det_config, det_ckpt, device=device)
52
+ self.detector.cfg = adapt_mmdet_pipeline(self.detector.cfg)
53
+
54
+ # build pose estimator
55
+ self.pose_estimator = init_pose_estimator(
56
+ pose_config,
57
+ pose_ckpt,
58
+ device=device)
59
+
60
+ def to(self, device):
61
+ self.detector.to(device)
62
+ self.pose_estimator.to(device)
63
+ return self
64
+
65
+ def __call__(self, oriImg):
66
+ # predict bbox
67
+ det_result = inference_detector(self.detector, oriImg)
68
+ pred_instance = det_result.pred_instances.cpu().numpy()
69
+ bboxes = np.concatenate(
70
+ (pred_instance.bboxes, pred_instance.scores[:, None]), axis=1)
71
+ bboxes = bboxes[np.logical_and(pred_instance.labels == 0,
72
+ pred_instance.scores > 0.5)]
73
+
74
+ # set NMS threshold
75
+ bboxes = bboxes[nms(bboxes, 0.7), :4]
76
+
77
+ # predict keypoints
78
+ if len(bboxes) == 0:
79
+ pose_results = inference_topdown(self.pose_estimator, oriImg)
80
+ else:
81
+ pose_results = inference_topdown(self.pose_estimator, oriImg, bboxes)
82
+ preds = merge_data_samples(pose_results)
83
+ preds = preds.pred_instances
84
+
85
+ # preds = pose_results[0].pred_instances
86
+ keypoints = preds.get('transformed_keypoints',
87
+ preds.keypoints)
88
+ if 'keypoint_scores' in preds:
89
+ scores = preds.keypoint_scores
90
+ else:
91
+ scores = np.ones(keypoints.shape[:-1])
92
+
93
+ if 'keypoints_visible' in preds:
94
+ visible = preds.keypoints_visible
95
+ else:
96
+ visible = np.ones(keypoints.shape[:-1])
97
+ keypoints_info = np.concatenate(
98
+ (keypoints, scores[..., None], visible[..., None]),
99
+ axis=-1)
100
+ # compute neck joint
101
+ neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
102
+ # neck score when visualizing pred
103
+ neck[:, 2:4] = np.logical_and(
104
+ keypoints_info[:, 5, 2:4] > 0.3,
105
+ keypoints_info[:, 6, 2:4] > 0.3).astype(int)
106
+ new_keypoints_info = np.insert(
107
+ keypoints_info, 17, neck, axis=1)
108
+ mmpose_idx = [
109
+ 17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
110
+ ]
111
+ openpose_idx = [
112
+ 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
113
+ ]
114
+ new_keypoints_info[:, openpose_idx] = \
115
+ new_keypoints_info[:, mmpose_idx]
116
+ keypoints_info = new_keypoints_info
117
+
118
+ keypoints, scores, visible = keypoints_info[
119
+ ..., :2], keypoints_info[..., 2], keypoints_info[..., 3]
120
+
121
+ return keypoints, scores
controlnet_aux/dwpose/yolox_config/__init__.py ADDED
File without changes
controlnet_aux/dwpose/yolox_config/yolox_l_8xb8-300e_coco.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ img_scale = (640, 640) # width, height
2
+
3
+ # model settings
4
+ model = dict(
5
+ type='YOLOX',
6
+ data_preprocessor=dict(
7
+ type='DetDataPreprocessor',
8
+ pad_size_divisor=32,
9
+ batch_augments=[
10
+ dict(
11
+ type='BatchSyncRandomResize',
12
+ random_size_range=(480, 800),
13
+ size_divisor=32,
14
+ interval=10)
15
+ ]),
16
+ backbone=dict(
17
+ type='CSPDarknet',
18
+ deepen_factor=1.0,
19
+ widen_factor=1.0,
20
+ out_indices=(2, 3, 4),
21
+ use_depthwise=False,
22
+ spp_kernal_sizes=(5, 9, 13),
23
+ norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
24
+ act_cfg=dict(type='Swish'),
25
+ ),
26
+ neck=dict(
27
+ type='YOLOXPAFPN',
28
+ in_channels=[256, 512, 1024],
29
+ out_channels=256,
30
+ num_csp_blocks=3,
31
+ use_depthwise=False,
32
+ upsample_cfg=dict(scale_factor=2, mode='nearest'),
33
+ norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
34
+ act_cfg=dict(type='Swish')),
35
+ bbox_head=dict(
36
+ type='YOLOXHead',
37
+ num_classes=80,
38
+ in_channels=256,
39
+ feat_channels=256,
40
+ stacked_convs=2,
41
+ strides=(8, 16, 32),
42
+ use_depthwise=False,
43
+ norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
44
+ act_cfg=dict(type='Swish'),
45
+ loss_cls=dict(
46
+ type='CrossEntropyLoss',
47
+ use_sigmoid=True,
48
+ reduction='sum',
49
+ loss_weight=1.0),
50
+ loss_bbox=dict(
51
+ type='IoULoss',
52
+ mode='square',
53
+ eps=1e-16,
54
+ reduction='sum',
55
+ loss_weight=5.0),
56
+ loss_obj=dict(
57
+ type='CrossEntropyLoss',
58
+ use_sigmoid=True,
59
+ reduction='sum',
60
+ loss_weight=1.0),
61
+ loss_l1=dict(type='L1Loss', reduction='sum', loss_weight=1.0)),
62
+ train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)),
63
+ # In order to align the source code, the threshold of the val phase is
64
+ # 0.01, and the threshold of the test phase is 0.001.
65
+ test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65)))
66
+
67
+ # dataset settings
68
+ data_root = 'data/coco/'
69
+ dataset_type = 'CocoDataset'
70
+
71
+ # Example to use different file client
72
+ # Method 1: simply set the data root and let the file I/O module
73
+ # automatically infer from prefix (not support LMDB and Memcache yet)
74
+
75
+ # data_root = 's3://openmmlab/datasets/detection/coco/'
76
+
77
+ # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
78
+ # backend_args = dict(
79
+ # backend='petrel',
80
+ # path_mapping=dict({
81
+ # './data/': 's3://openmmlab/datasets/detection/',
82
+ # 'data/': 's3://openmmlab/datasets/detection/'
83
+ # }))
84
+ backend_args = None
85
+
86
+ train_pipeline = [
87
+ dict(type='Mosaic', img_scale=img_scale, pad_val=114.0),
88
+ dict(
89
+ type='RandomAffine',
90
+ scaling_ratio_range=(0.1, 2),
91
+ # img_scale is (width, height)
92
+ border=(-img_scale[0] // 2, -img_scale[1] // 2)),
93
+ dict(
94
+ type='MixUp',
95
+ img_scale=img_scale,
96
+ ratio_range=(0.8, 1.6),
97
+ pad_val=114.0),
98
+ dict(type='YOLOXHSVRandomAug'),
99
+ dict(type='RandomFlip', prob=0.5),
100
+ # According to the official implementation, multi-scale
101
+ # training is not considered here but in the
102
+ # 'mmdet/models/detectors/yolox.py'.
103
+ # Resize and Pad are for the last 15 epochs when Mosaic,
104
+ # RandomAffine, and MixUp are closed by YOLOXModeSwitchHook.
105
+ dict(type='Resize', scale=img_scale, keep_ratio=True),
106
+ dict(
107
+ type='Pad',
108
+ pad_to_square=True,
109
+ # If the image is three-channel, the pad value needs
110
+ # to be set separately for each channel.
111
+ pad_val=dict(img=(114.0, 114.0, 114.0))),
112
+ dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
113
+ dict(type='PackDetInputs')
114
+ ]
115
+
116
+ train_dataset = dict(
117
+ # use MultiImageMixDataset wrapper to support mosaic and mixup
118
+ type='MultiImageMixDataset',
119
+ dataset=dict(
120
+ type=dataset_type,
121
+ data_root=data_root,
122
+ ann_file='annotations/instances_train2017.json',
123
+ data_prefix=dict(img='train2017/'),
124
+ pipeline=[
125
+ dict(type='LoadImageFromFile', backend_args=backend_args),
126
+ dict(type='LoadAnnotations', with_bbox=True)
127
+ ],
128
+ filter_cfg=dict(filter_empty_gt=False, min_size=32),
129
+ backend_args=backend_args),
130
+ pipeline=train_pipeline)
131
+
132
+ test_pipeline = [
133
+ dict(type='LoadImageFromFile', backend_args=backend_args),
134
+ dict(type='Resize', scale=img_scale, keep_ratio=True),
135
+ dict(
136
+ type='Pad',
137
+ pad_to_square=True,
138
+ pad_val=dict(img=(114.0, 114.0, 114.0))),
139
+ dict(type='LoadAnnotations', with_bbox=True),
140
+ dict(
141
+ type='PackDetInputs',
142
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
143
+ 'scale_factor'))
144
+ ]
145
+
146
+ train_dataloader = dict(
147
+ batch_size=8,
148
+ num_workers=4,
149
+ persistent_workers=True,
150
+ sampler=dict(type='DefaultSampler', shuffle=True),
151
+ dataset=train_dataset)
152
+ val_dataloader = dict(
153
+ batch_size=8,
154
+ num_workers=4,
155
+ persistent_workers=True,
156
+ drop_last=False,
157
+ sampler=dict(type='DefaultSampler', shuffle=False),
158
+ dataset=dict(
159
+ type=dataset_type,
160
+ data_root=data_root,
161
+ ann_file='annotations/instances_val2017.json',
162
+ data_prefix=dict(img='val2017/'),
163
+ test_mode=True,
164
+ pipeline=test_pipeline,
165
+ backend_args=backend_args))
166
+ test_dataloader = val_dataloader
167
+
168
+ val_evaluator = dict(
169
+ type='CocoMetric',
170
+ ann_file=data_root + 'annotations/instances_val2017.json',
171
+ metric='bbox',
172
+ backend_args=backend_args)
173
+ test_evaluator = val_evaluator
174
+
175
+ # training settings
176
+ max_epochs = 300
177
+ num_last_epochs = 15
178
+ interval = 10
179
+
180
+ train_cfg = dict(max_epochs=max_epochs, val_interval=interval)
181
+
182
+ # optimizer
183
+ # default 8 gpu
184
+ base_lr = 0.01
185
+ optim_wrapper = dict(
186
+ type='OptimWrapper',
187
+ optimizer=dict(
188
+ type='SGD', lr=base_lr, momentum=0.9, weight_decay=5e-4,
189
+ nesterov=True),
190
+ paramwise_cfg=dict(norm_decay_mult=0., bias_decay_mult=0.))
191
+
192
+ # learning rate
193
+ param_scheduler = [
194
+ dict(
195
+ # use quadratic formula to warm up 5 epochs
196
+ # and lr is updated by iteration
197
+ # TODO: fix default scope in get function
198
+ type='mmdet.QuadraticWarmupLR',
199
+ by_epoch=True,
200
+ begin=0,
201
+ end=5,
202
+ convert_to_iter_based=True),
203
+ dict(
204
+ # use cosine lr from 5 to 285 epoch
205
+ type='CosineAnnealingLR',
206
+ eta_min=base_lr * 0.05,
207
+ begin=5,
208
+ T_max=max_epochs - num_last_epochs,
209
+ end=max_epochs - num_last_epochs,
210
+ by_epoch=True,
211
+ convert_to_iter_based=True),
212
+ dict(
213
+ # use fixed lr during last 15 epochs
214
+ type='ConstantLR',
215
+ by_epoch=True,
216
+ factor=1,
217
+ begin=max_epochs - num_last_epochs,
218
+ end=max_epochs,
219
+ )
220
+ ]
221
+
222
+ default_hooks = dict(
223
+ checkpoint=dict(
224
+ interval=interval,
225
+ max_keep_ckpts=3 # only keep latest 3 checkpoints
226
+ ))
227
+
228
+ custom_hooks = [
229
+ dict(
230
+ type='YOLOXModeSwitchHook',
231
+ num_last_epochs=num_last_epochs,
232
+ priority=48),
233
+ dict(type='SyncNormHook', priority=48),
234
+ dict(
235
+ type='EMAHook',
236
+ ema_type='ExpMomentumEMA',
237
+ momentum=0.0001,
238
+ update_buffers=True,
239
+ priority=49)
240
+ ]
241
+
242
+ # NOTE: `auto_scale_lr` is for automatically scaling LR,
243
+ # USER SHOULD NOT CHANGE ITS VALUES.
244
+ # base_batch_size = (8 GPUs) x (8 samples per GPU)
245
+ auto_scale_lr = dict(base_batch_size=64)
controlnet_aux/hed/__init__.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This is an improved version and model of HED edge detection with Apache License, Version 2.0.
2
+ # Please use this implementation in your products
3
+ # This implementation may produce slightly different results from Saining Xie's official implementations,
4
+ # but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations.
5
+ # Different from official models and other implementations, this is an RGB-input model (rather than BGR)
6
+ # and in this way it works better for gradio's RGB protocol
7
+
8
+ import os
9
+ import warnings
10
+
11
+ import cv2
12
+ import numpy as np
13
+ import torch
14
+ from einops import rearrange
15
+ from huggingface_hub import hf_hub_download
16
+ from PIL import Image
17
+
18
+ from ..util import HWC3, nms, resize_image, safe_step
19
+
20
+
21
+ class DoubleConvBlock(torch.nn.Module):
22
+ def __init__(self, input_channel, output_channel, layer_number):
23
+ super().__init__()
24
+ self.convs = torch.nn.Sequential()
25
+ self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
26
+ for i in range(1, layer_number):
27
+ self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
28
+ self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0)
29
+
30
+ def __call__(self, x, down_sampling=False):
31
+ h = x
32
+ if down_sampling:
33
+ h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2))
34
+ for conv in self.convs:
35
+ h = conv(h)
36
+ h = torch.nn.functional.relu(h)
37
+ return h, self.projection(h)
38
+
39
+
40
+ class ControlNetHED_Apache2(torch.nn.Module):
41
+ def __init__(self):
42
+ super().__init__()
43
+ self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1)))
44
+ self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2)
45
+ self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2)
46
+ self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3)
47
+ self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3)
48
+ self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3)
49
+
50
+ def __call__(self, x):
51
+ h = x - self.norm
52
+ h, projection1 = self.block1(h)
53
+ h, projection2 = self.block2(h, down_sampling=True)
54
+ h, projection3 = self.block3(h, down_sampling=True)
55
+ h, projection4 = self.block4(h, down_sampling=True)
56
+ h, projection5 = self.block5(h, down_sampling=True)
57
+ return projection1, projection2, projection3, projection4, projection5
58
+
59
+ class HEDdetector:
60
+ def __init__(self, netNetwork):
61
+ self.netNetwork = netNetwork
62
+
63
+ @classmethod
64
+ def from_pretrained(cls, pretrained_model_or_path, filename=None, cache_dir=None, local_files_only=False):
65
+ filename = filename or "ControlNetHED.pth"
66
+
67
+ if os.path.isdir(pretrained_model_or_path):
68
+ model_path = os.path.join(pretrained_model_or_path, filename)
69
+ else:
70
+ model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only)
71
+
72
+ netNetwork = ControlNetHED_Apache2()
73
+ netNetwork.load_state_dict(torch.load(model_path, map_location='cpu'))
74
+ netNetwork.float().eval()
75
+
76
+ return cls(netNetwork)
77
+
78
+ def to(self, device):
79
+ self.netNetwork.to(device)
80
+ return self
81
+
82
+ def __call__(self, input_image, detect_resolution=512, image_resolution=512, safe=False, output_type="pil", scribble=False, **kwargs):
83
+ if "return_pil" in kwargs:
84
+ warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning)
85
+ output_type = "pil" if kwargs["return_pil"] else "np"
86
+ if type(output_type) is bool:
87
+ warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions")
88
+ if output_type:
89
+ output_type = "pil"
90
+
91
+ device = next(iter(self.netNetwork.parameters())).device
92
+ if not isinstance(input_image, np.ndarray):
93
+ input_image = np.array(input_image, dtype=np.uint8)
94
+
95
+ input_image = HWC3(input_image)
96
+ input_image = resize_image(input_image, detect_resolution)
97
+
98
+ assert input_image.ndim == 3
99
+ H, W, C = input_image.shape
100
+ with torch.no_grad():
101
+ image_hed = torch.from_numpy(input_image.copy()).float().to(device)
102
+ image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
103
+ edges = self.netNetwork(image_hed)
104
+ edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
105
+ edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges]
106
+ edges = np.stack(edges, axis=2)
107
+ edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
108
+ if safe:
109
+ edge = safe_step(edge)
110
+ edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
111
+
112
+ detected_map = edge
113
+ detected_map = HWC3(detected_map)
114
+
115
+ img = resize_image(input_image, image_resolution)
116
+ H, W, C = img.shape
117
+
118
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
119
+
120
+ if scribble:
121
+ detected_map = nms(detected_map, 127, 3.0)
122
+ detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
123
+ detected_map[detected_map > 4] = 255
124
+ detected_map[detected_map < 255] = 0
125
+
126
+ if output_type == "pil":
127
+ detected_map = Image.fromarray(detected_map)
128
+
129
+ return detected_map
controlnet_aux/leres/__init__.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import cv2
4
+ import numpy as np
5
+ import torch
6
+ from huggingface_hub import hf_hub_download
7
+ from PIL import Image
8
+
9
+ from ..util import HWC3, resize_image
10
+ from .leres.depthmap import estimateboost, estimateleres
11
+ from .leres.multi_depth_model_woauxi import RelDepthModel
12
+ from .leres.net_tools import strip_prefix_if_present
13
+ from .pix2pix.models.pix2pix4depth_model import Pix2Pix4DepthModel
14
+ from .pix2pix.options.test_options import TestOptions
15
+
16
+
17
+ class LeresDetector:
18
+ def __init__(self, model, pix2pixmodel):
19
+ self.model = model
20
+ self.pix2pixmodel = pix2pixmodel
21
+
22
+ @classmethod
23
+ def from_pretrained(cls, pretrained_model_or_path, filename=None, pix2pix_filename=None, cache_dir=None, local_files_only=False):
24
+ filename = filename or "res101.pth"
25
+ pix2pix_filename = pix2pix_filename or "latest_net_G.pth"
26
+
27
+ if os.path.isdir(pretrained_model_or_path):
28
+ model_path = os.path.join(pretrained_model_or_path, filename)
29
+ else:
30
+ model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only)
31
+
32
+ checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
33
+
34
+ model = RelDepthModel(backbone='resnext101')
35
+ model.load_state_dict(strip_prefix_if_present(checkpoint['depth_model'], "module."), strict=True)
36
+ del checkpoint
37
+
38
+ if os.path.isdir(pretrained_model_or_path):
39
+ model_path = os.path.join(pretrained_model_or_path, pix2pix_filename)
40
+ else:
41
+ model_path = hf_hub_download(pretrained_model_or_path, pix2pix_filename, cache_dir=cache_dir, local_files_only=local_files_only)
42
+
43
+ opt = TestOptions().parse()
44
+ if not torch.cuda.is_available():
45
+ opt.gpu_ids = [] # cpu mode
46
+ pix2pixmodel = Pix2Pix4DepthModel(opt)
47
+ pix2pixmodel.save_dir = os.path.dirname(model_path)
48
+ pix2pixmodel.load_networks('latest')
49
+ pix2pixmodel.eval()
50
+
51
+ return cls(model, pix2pixmodel)
52
+
53
+ def to(self, device):
54
+ self.model.to(device)
55
+ # TODO - refactor pix2pix implementation to support device migration
56
+ # self.pix2pixmodel.to(device)
57
+ return self
58
+
59
+ def __call__(self, input_image, thr_a=0, thr_b=0, boost=False, detect_resolution=512, image_resolution=512, output_type="pil"):
60
+ device = next(iter(self.model.parameters())).device
61
+ if not isinstance(input_image, np.ndarray):
62
+ input_image = np.array(input_image, dtype=np.uint8)
63
+
64
+ input_image = HWC3(input_image)
65
+ input_image = resize_image(input_image, detect_resolution)
66
+
67
+ assert input_image.ndim == 3
68
+ height, width, dim = input_image.shape
69
+
70
+ with torch.no_grad():
71
+
72
+ if boost:
73
+ depth = estimateboost(input_image, self.model, 0, self.pix2pixmodel, max(width, height))
74
+ else:
75
+ depth = estimateleres(input_image, self.model, width, height)
76
+
77
+ numbytes=2
78
+ depth_min = depth.min()
79
+ depth_max = depth.max()
80
+ max_val = (2**(8*numbytes))-1
81
+
82
+ # check output before normalizing and mapping to 16 bit
83
+ if depth_max - depth_min > np.finfo("float").eps:
84
+ out = max_val * (depth - depth_min) / (depth_max - depth_min)
85
+ else:
86
+ out = np.zeros(depth.shape)
87
+
88
+ # single channel, 16 bit image
89
+ depth_image = out.astype("uint16")
90
+
91
+ # convert to uint8
92
+ depth_image = cv2.convertScaleAbs(depth_image, alpha=(255.0/65535.0))
93
+
94
+ # remove near
95
+ if thr_a != 0:
96
+ thr_a = ((thr_a/100)*255)
97
+ depth_image = cv2.threshold(depth_image, thr_a, 255, cv2.THRESH_TOZERO)[1]
98
+
99
+ # invert image
100
+ depth_image = cv2.bitwise_not(depth_image)
101
+
102
+ # remove bg
103
+ if thr_b != 0:
104
+ thr_b = ((thr_b/100)*255)
105
+ depth_image = cv2.threshold(depth_image, thr_b, 255, cv2.THRESH_TOZERO)[1]
106
+
107
+ detected_map = depth_image
108
+ detected_map = HWC3(detected_map)
109
+
110
+ img = resize_image(input_image, image_resolution)
111
+ H, W, C = img.shape
112
+
113
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
114
+
115
+ if output_type == "pil":
116
+ detected_map = Image.fromarray(detected_map)
117
+
118
+ return detected_map
controlnet_aux/leres/leres/LICENSE ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ https://github.com/thygate/stable-diffusion-webui-depthmap-script
2
+
3
+ MIT License
4
+
5
+ Copyright (c) 2023 Bob Thiry
6
+
7
+ Permission is hereby granted, free of charge, to any person obtaining a copy
8
+ of this software and associated documentation files (the "Software"), to deal
9
+ in the Software without restriction, including without limitation the rights
10
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11
+ copies of the Software, and to permit persons to whom the Software is
12
+ furnished to do so, subject to the following conditions:
13
+
14
+ The above copyright notice and this permission notice shall be included in all
15
+ copies or substantial portions of the Software.
16
+
17
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23
+ SOFTWARE.
controlnet_aux/leres/leres/Resnet.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch.nn as NN
3
+
4
+ __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
5
+ 'resnet152']
6
+
7
+
8
+ model_urls = {
9
+ 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
10
+ 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
11
+ 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
12
+ 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
13
+ 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
14
+ }
15
+
16
+
17
+ def conv3x3(in_planes, out_planes, stride=1):
18
+ """3x3 convolution with padding"""
19
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
20
+ padding=1, bias=False)
21
+
22
+
23
+ class BasicBlock(nn.Module):
24
+ expansion = 1
25
+
26
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
27
+ super(BasicBlock, self).__init__()
28
+ self.conv1 = conv3x3(inplanes, planes, stride)
29
+ self.bn1 = NN.BatchNorm2d(planes) #NN.BatchNorm2d
30
+ self.relu = nn.ReLU(inplace=True)
31
+ self.conv2 = conv3x3(planes, planes)
32
+ self.bn2 = NN.BatchNorm2d(planes) #NN.BatchNorm2d
33
+ self.downsample = downsample
34
+ self.stride = stride
35
+
36
+ def forward(self, x):
37
+ residual = x
38
+
39
+ out = self.conv1(x)
40
+ out = self.bn1(out)
41
+ out = self.relu(out)
42
+
43
+ out = self.conv2(out)
44
+ out = self.bn2(out)
45
+
46
+ if self.downsample is not None:
47
+ residual = self.downsample(x)
48
+
49
+ out += residual
50
+ out = self.relu(out)
51
+
52
+ return out
53
+
54
+
55
+ class Bottleneck(nn.Module):
56
+ expansion = 4
57
+
58
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
59
+ super(Bottleneck, self).__init__()
60
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
61
+ self.bn1 = NN.BatchNorm2d(planes) #NN.BatchNorm2d
62
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
63
+ padding=1, bias=False)
64
+ self.bn2 = NN.BatchNorm2d(planes) #NN.BatchNorm2d
65
+ self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
66
+ self.bn3 = NN.BatchNorm2d(planes * self.expansion) #NN.BatchNorm2d
67
+ self.relu = nn.ReLU(inplace=True)
68
+ self.downsample = downsample
69
+ self.stride = stride
70
+
71
+ def forward(self, x):
72
+ residual = x
73
+
74
+ out = self.conv1(x)
75
+ out = self.bn1(out)
76
+ out = self.relu(out)
77
+
78
+ out = self.conv2(out)
79
+ out = self.bn2(out)
80
+ out = self.relu(out)
81
+
82
+ out = self.conv3(out)
83
+ out = self.bn3(out)
84
+
85
+ if self.downsample is not None:
86
+ residual = self.downsample(x)
87
+
88
+ out += residual
89
+ out = self.relu(out)
90
+
91
+ return out
92
+
93
+
94
+ class ResNet(nn.Module):
95
+
96
+ def __init__(self, block, layers, num_classes=1000):
97
+ self.inplanes = 64
98
+ super(ResNet, self).__init__()
99
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
100
+ bias=False)
101
+ self.bn1 = NN.BatchNorm2d(64) #NN.BatchNorm2d
102
+ self.relu = nn.ReLU(inplace=True)
103
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
104
+ self.layer1 = self._make_layer(block, 64, layers[0])
105
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
106
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
107
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
108
+ #self.avgpool = nn.AvgPool2d(7, stride=1)
109
+ #self.fc = nn.Linear(512 * block.expansion, num_classes)
110
+
111
+ for m in self.modules():
112
+ if isinstance(m, nn.Conv2d):
113
+ nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
114
+ elif isinstance(m, nn.BatchNorm2d):
115
+ nn.init.constant_(m.weight, 1)
116
+ nn.init.constant_(m.bias, 0)
117
+
118
+ def _make_layer(self, block, planes, blocks, stride=1):
119
+ downsample = None
120
+ if stride != 1 or self.inplanes != planes * block.expansion:
121
+ downsample = nn.Sequential(
122
+ nn.Conv2d(self.inplanes, planes * block.expansion,
123
+ kernel_size=1, stride=stride, bias=False),
124
+ NN.BatchNorm2d(planes * block.expansion), #NN.BatchNorm2d
125
+ )
126
+
127
+ layers = []
128
+ layers.append(block(self.inplanes, planes, stride, downsample))
129
+ self.inplanes = planes * block.expansion
130
+ for i in range(1, blocks):
131
+ layers.append(block(self.inplanes, planes))
132
+
133
+ return nn.Sequential(*layers)
134
+
135
+ def forward(self, x):
136
+ features = []
137
+
138
+ x = self.conv1(x)
139
+ x = self.bn1(x)
140
+ x = self.relu(x)
141
+ x = self.maxpool(x)
142
+
143
+ x = self.layer1(x)
144
+ features.append(x)
145
+ x = self.layer2(x)
146
+ features.append(x)
147
+ x = self.layer3(x)
148
+ features.append(x)
149
+ x = self.layer4(x)
150
+ features.append(x)
151
+
152
+ return features
153
+
154
+
155
+ def resnet18(pretrained=True, **kwargs):
156
+ """Constructs a ResNet-18 model.
157
+ Args:
158
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
159
+ """
160
+ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
161
+ return model
162
+
163
+
164
+ def resnet34(pretrained=True, **kwargs):
165
+ """Constructs a ResNet-34 model.
166
+ Args:
167
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
168
+ """
169
+ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
170
+ return model
171
+
172
+
173
+ def resnet50(pretrained=True, **kwargs):
174
+ """Constructs a ResNet-50 model.
175
+ Args:
176
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
177
+ """
178
+ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
179
+
180
+ return model
181
+
182
+
183
+ def resnet101(pretrained=True, **kwargs):
184
+ """Constructs a ResNet-101 model.
185
+ Args:
186
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
187
+ """
188
+ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
189
+
190
+ return model
191
+
192
+
193
+ def resnet152(pretrained=True, **kwargs):
194
+ """Constructs a ResNet-152 model.
195
+ Args:
196
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
197
+ """
198
+ model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
199
+ return model
controlnet_aux/leres/leres/Resnext_torch.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+ import torch.nn as nn
4
+
5
+ try:
6
+ from urllib import urlretrieve
7
+ except ImportError:
8
+ from urllib.request import urlretrieve
9
+
10
+ __all__ = ['resnext101_32x8d']
11
+
12
+
13
+ model_urls = {
14
+ 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
15
+ 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
16
+ }
17
+
18
+
19
+ def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
20
+ """3x3 convolution with padding"""
21
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
22
+ padding=dilation, groups=groups, bias=False, dilation=dilation)
23
+
24
+
25
+ def conv1x1(in_planes, out_planes, stride=1):
26
+ """1x1 convolution"""
27
+ return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
28
+
29
+
30
+ class BasicBlock(nn.Module):
31
+ expansion = 1
32
+
33
+ def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
34
+ base_width=64, dilation=1, norm_layer=None):
35
+ super(BasicBlock, self).__init__()
36
+ if norm_layer is None:
37
+ norm_layer = nn.BatchNorm2d
38
+ if groups != 1 or base_width != 64:
39
+ raise ValueError('BasicBlock only supports groups=1 and base_width=64')
40
+ if dilation > 1:
41
+ raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
42
+ # Both self.conv1 and self.downsample layers downsample the input when stride != 1
43
+ self.conv1 = conv3x3(inplanes, planes, stride)
44
+ self.bn1 = norm_layer(planes)
45
+ self.relu = nn.ReLU(inplace=True)
46
+ self.conv2 = conv3x3(planes, planes)
47
+ self.bn2 = norm_layer(planes)
48
+ self.downsample = downsample
49
+ self.stride = stride
50
+
51
+ def forward(self, x):
52
+ identity = x
53
+
54
+ out = self.conv1(x)
55
+ out = self.bn1(out)
56
+ out = self.relu(out)
57
+
58
+ out = self.conv2(out)
59
+ out = self.bn2(out)
60
+
61
+ if self.downsample is not None:
62
+ identity = self.downsample(x)
63
+
64
+ out += identity
65
+ out = self.relu(out)
66
+
67
+ return out
68
+
69
+
70
+ class Bottleneck(nn.Module):
71
+ # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
72
+ # while original implementation places the stride at the first 1x1 convolution(self.conv1)
73
+ # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
74
+ # This variant is also known as ResNet V1.5 and improves accuracy according to
75
+ # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
76
+
77
+ expansion = 4
78
+
79
+ def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
80
+ base_width=64, dilation=1, norm_layer=None):
81
+ super(Bottleneck, self).__init__()
82
+ if norm_layer is None:
83
+ norm_layer = nn.BatchNorm2d
84
+ width = int(planes * (base_width / 64.)) * groups
85
+ # Both self.conv2 and self.downsample layers downsample the input when stride != 1
86
+ self.conv1 = conv1x1(inplanes, width)
87
+ self.bn1 = norm_layer(width)
88
+ self.conv2 = conv3x3(width, width, stride, groups, dilation)
89
+ self.bn2 = norm_layer(width)
90
+ self.conv3 = conv1x1(width, planes * self.expansion)
91
+ self.bn3 = norm_layer(planes * self.expansion)
92
+ self.relu = nn.ReLU(inplace=True)
93
+ self.downsample = downsample
94
+ self.stride = stride
95
+
96
+ def forward(self, x):
97
+ identity = x
98
+
99
+ out = self.conv1(x)
100
+ out = self.bn1(out)
101
+ out = self.relu(out)
102
+
103
+ out = self.conv2(out)
104
+ out = self.bn2(out)
105
+ out = self.relu(out)
106
+
107
+ out = self.conv3(out)
108
+ out = self.bn3(out)
109
+
110
+ if self.downsample is not None:
111
+ identity = self.downsample(x)
112
+
113
+ out += identity
114
+ out = self.relu(out)
115
+
116
+ return out
117
+
118
+
119
+ class ResNet(nn.Module):
120
+
121
+ def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
122
+ groups=1, width_per_group=64, replace_stride_with_dilation=None,
123
+ norm_layer=None):
124
+ super(ResNet, self).__init__()
125
+ if norm_layer is None:
126
+ norm_layer = nn.BatchNorm2d
127
+ self._norm_layer = norm_layer
128
+
129
+ self.inplanes = 64
130
+ self.dilation = 1
131
+ if replace_stride_with_dilation is None:
132
+ # each element in the tuple indicates if we should replace
133
+ # the 2x2 stride with a dilated convolution instead
134
+ replace_stride_with_dilation = [False, False, False]
135
+ if len(replace_stride_with_dilation) != 3:
136
+ raise ValueError("replace_stride_with_dilation should be None "
137
+ "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
138
+ self.groups = groups
139
+ self.base_width = width_per_group
140
+ self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
141
+ bias=False)
142
+ self.bn1 = norm_layer(self.inplanes)
143
+ self.relu = nn.ReLU(inplace=True)
144
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
145
+ self.layer1 = self._make_layer(block, 64, layers[0])
146
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
147
+ dilate=replace_stride_with_dilation[0])
148
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
149
+ dilate=replace_stride_with_dilation[1])
150
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
151
+ dilate=replace_stride_with_dilation[2])
152
+ #self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
153
+ #self.fc = nn.Linear(512 * block.expansion, num_classes)
154
+
155
+ for m in self.modules():
156
+ if isinstance(m, nn.Conv2d):
157
+ nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
158
+ elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
159
+ nn.init.constant_(m.weight, 1)
160
+ nn.init.constant_(m.bias, 0)
161
+
162
+ # Zero-initialize the last BN in each residual branch,
163
+ # so that the residual branch starts with zeros, and each residual block behaves like an identity.
164
+ # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
165
+ if zero_init_residual:
166
+ for m in self.modules():
167
+ if isinstance(m, Bottleneck):
168
+ nn.init.constant_(m.bn3.weight, 0)
169
+ elif isinstance(m, BasicBlock):
170
+ nn.init.constant_(m.bn2.weight, 0)
171
+
172
+ def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
173
+ norm_layer = self._norm_layer
174
+ downsample = None
175
+ previous_dilation = self.dilation
176
+ if dilate:
177
+ self.dilation *= stride
178
+ stride = 1
179
+ if stride != 1 or self.inplanes != planes * block.expansion:
180
+ downsample = nn.Sequential(
181
+ conv1x1(self.inplanes, planes * block.expansion, stride),
182
+ norm_layer(planes * block.expansion),
183
+ )
184
+
185
+ layers = []
186
+ layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
187
+ self.base_width, previous_dilation, norm_layer))
188
+ self.inplanes = planes * block.expansion
189
+ for _ in range(1, blocks):
190
+ layers.append(block(self.inplanes, planes, groups=self.groups,
191
+ base_width=self.base_width, dilation=self.dilation,
192
+ norm_layer=norm_layer))
193
+
194
+ return nn.Sequential(*layers)
195
+
196
+ def _forward_impl(self, x):
197
+ # See note [TorchScript super()]
198
+ features = []
199
+ x = self.conv1(x)
200
+ x = self.bn1(x)
201
+ x = self.relu(x)
202
+ x = self.maxpool(x)
203
+
204
+ x = self.layer1(x)
205
+ features.append(x)
206
+
207
+ x = self.layer2(x)
208
+ features.append(x)
209
+
210
+ x = self.layer3(x)
211
+ features.append(x)
212
+
213
+ x = self.layer4(x)
214
+ features.append(x)
215
+
216
+ #x = self.avgpool(x)
217
+ #x = torch.flatten(x, 1)
218
+ #x = self.fc(x)
219
+
220
+ return features
221
+
222
+ def forward(self, x):
223
+ return self._forward_impl(x)
224
+
225
+
226
+
227
+ def resnext101_32x8d(pretrained=True, **kwargs):
228
+ """Constructs a ResNet-152 model.
229
+ Args:
230
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
231
+ """
232
+ kwargs['groups'] = 32
233
+ kwargs['width_per_group'] = 8
234
+
235
+ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
236
+ return model
237
+
controlnet_aux/leres/leres/__init__.py ADDED
File without changes
controlnet_aux/leres/leres/depthmap.py ADDED
@@ -0,0 +1,548 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Author: thygate
2
+ # https://github.com/thygate/stable-diffusion-webui-depthmap-script
3
+
4
+ import gc
5
+ from operator import getitem
6
+
7
+ import cv2
8
+ import numpy as np
9
+ import skimage.measure
10
+ import torch
11
+ from torchvision.transforms import transforms
12
+
13
+ from ...util import torch_gc
14
+
15
+ whole_size_threshold = 1600 # R_max from the paper
16
+ pix2pixsize = 1024
17
+
18
+ def scale_torch(img):
19
+ """
20
+ Scale the image and output it in torch.tensor.
21
+ :param img: input rgb is in shape [H, W, C], input depth/disp is in shape [H, W]
22
+ :param scale: the scale factor. float
23
+ :return: img. [C, H, W]
24
+ """
25
+ if len(img.shape) == 2:
26
+ img = img[np.newaxis, :, :]
27
+ if img.shape[2] == 3:
28
+ transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406) , (0.229, 0.224, 0.225) )])
29
+ img = transform(img.astype(np.float32))
30
+ else:
31
+ img = img.astype(np.float32)
32
+ img = torch.from_numpy(img)
33
+ return img
34
+
35
+ def estimateleres(img, model, w, h):
36
+ device = next(iter(model.parameters())).device
37
+ # leres transform input
38
+ rgb_c = img[:, :, ::-1].copy()
39
+ A_resize = cv2.resize(rgb_c, (w, h))
40
+ img_torch = scale_torch(A_resize)[None, :, :, :]
41
+
42
+ # compute
43
+ with torch.no_grad():
44
+ img_torch = img_torch.to(device)
45
+ prediction = model.depth_model(img_torch)
46
+
47
+ prediction = prediction.squeeze().cpu().numpy()
48
+ prediction = cv2.resize(prediction, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_CUBIC)
49
+
50
+ return prediction
51
+
52
+ def generatemask(size):
53
+ # Generates a Guassian mask
54
+ mask = np.zeros(size, dtype=np.float32)
55
+ sigma = int(size[0]/16)
56
+ k_size = int(2 * np.ceil(2 * int(size[0]/16)) + 1)
57
+ mask[int(0.15*size[0]):size[0] - int(0.15*size[0]), int(0.15*size[1]): size[1] - int(0.15*size[1])] = 1
58
+ mask = cv2.GaussianBlur(mask, (int(k_size), int(k_size)), sigma)
59
+ mask = (mask - mask.min()) / (mask.max() - mask.min())
60
+ mask = mask.astype(np.float32)
61
+ return mask
62
+
63
+ def resizewithpool(img, size):
64
+ i_size = img.shape[0]
65
+ n = int(np.floor(i_size/size))
66
+
67
+ out = skimage.measure.block_reduce(img, (n, n), np.max)
68
+ return out
69
+
70
+ def rgb2gray(rgb):
71
+ # Converts rgb to gray
72
+ return np.dot(rgb[..., :3], [0.2989, 0.5870, 0.1140])
73
+
74
+ def calculateprocessingres(img, basesize, confidence=0.1, scale_threshold=3, whole_size_threshold=3000):
75
+ # Returns the R_x resolution described in section 5 of the main paper.
76
+
77
+ # Parameters:
78
+ # img :input rgb image
79
+ # basesize : size the dilation kernel which is equal to receptive field of the network.
80
+ # confidence: value of x in R_x; allowed percentage of pixels that are not getting any contextual cue.
81
+ # scale_threshold: maximum allowed upscaling on the input image ; it has been set to 3.
82
+ # whole_size_threshold: maximum allowed resolution. (R_max from section 6 of the main paper)
83
+
84
+ # Returns:
85
+ # outputsize_scale*speed_scale :The computed R_x resolution
86
+ # patch_scale: K parameter from section 6 of the paper
87
+
88
+ # speed scale parameter is to process every image in a smaller size to accelerate the R_x resolution search
89
+ speed_scale = 32
90
+ image_dim = int(min(img.shape[0:2]))
91
+
92
+ gray = rgb2gray(img)
93
+ grad = np.abs(cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)) + np.abs(cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3))
94
+ grad = cv2.resize(grad, (image_dim, image_dim), cv2.INTER_AREA)
95
+
96
+ # thresholding the gradient map to generate the edge-map as a proxy of the contextual cues
97
+ m = grad.min()
98
+ M = grad.max()
99
+ middle = m + (0.4 * (M - m))
100
+ grad[grad < middle] = 0
101
+ grad[grad >= middle] = 1
102
+
103
+ # dilation kernel with size of the receptive field
104
+ kernel = np.ones((int(basesize/speed_scale), int(basesize/speed_scale)), float)
105
+ # dilation kernel with size of the a quarter of receptive field used to compute k
106
+ # as described in section 6 of main paper
107
+ kernel2 = np.ones((int(basesize / (4*speed_scale)), int(basesize / (4*speed_scale))), float)
108
+
109
+ # Output resolution limit set by the whole_size_threshold and scale_threshold.
110
+ threshold = min(whole_size_threshold, scale_threshold * max(img.shape[:2]))
111
+
112
+ outputsize_scale = basesize / speed_scale
113
+ for p_size in range(int(basesize/speed_scale), int(threshold/speed_scale), int(basesize / (2*speed_scale))):
114
+ grad_resized = resizewithpool(grad, p_size)
115
+ grad_resized = cv2.resize(grad_resized, (p_size, p_size), cv2.INTER_NEAREST)
116
+ grad_resized[grad_resized >= 0.5] = 1
117
+ grad_resized[grad_resized < 0.5] = 0
118
+
119
+ dilated = cv2.dilate(grad_resized, kernel, iterations=1)
120
+ meanvalue = (1-dilated).mean()
121
+ if meanvalue > confidence:
122
+ break
123
+ else:
124
+ outputsize_scale = p_size
125
+
126
+ grad_region = cv2.dilate(grad_resized, kernel2, iterations=1)
127
+ patch_scale = grad_region.mean()
128
+
129
+ return int(outputsize_scale*speed_scale), patch_scale
130
+
131
+ # Generate a double-input depth estimation
132
+ def doubleestimate(img, size1, size2, pix2pixsize, model, net_type, pix2pixmodel):
133
+ # Generate the low resolution estimation
134
+ estimate1 = singleestimate(img, size1, model, net_type)
135
+ # Resize to the inference size of merge network.
136
+ estimate1 = cv2.resize(estimate1, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
137
+
138
+ # Generate the high resolution estimation
139
+ estimate2 = singleestimate(img, size2, model, net_type)
140
+ # Resize to the inference size of merge network.
141
+ estimate2 = cv2.resize(estimate2, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
142
+
143
+ # Inference on the merge model
144
+ pix2pixmodel.set_input(estimate1, estimate2)
145
+ pix2pixmodel.test()
146
+ visuals = pix2pixmodel.get_current_visuals()
147
+ prediction_mapped = visuals['fake_B']
148
+ prediction_mapped = (prediction_mapped+1)/2
149
+ prediction_mapped = (prediction_mapped - torch.min(prediction_mapped)) / (
150
+ torch.max(prediction_mapped) - torch.min(prediction_mapped))
151
+ prediction_mapped = prediction_mapped.squeeze().cpu().numpy()
152
+
153
+ return prediction_mapped
154
+
155
+ # Generate a single-input depth estimation
156
+ def singleestimate(img, msize, model, net_type):
157
+ # if net_type == 0:
158
+ return estimateleres(img, model, msize, msize)
159
+ # else:
160
+ # return estimatemidasBoost(img, model, msize, msize)
161
+
162
+ def applyGridpatch(blsize, stride, img, box):
163
+ # Extract a simple grid patch.
164
+ counter1 = 0
165
+ patch_bound_list = {}
166
+ for k in range(blsize, img.shape[1] - blsize, stride):
167
+ for j in range(blsize, img.shape[0] - blsize, stride):
168
+ patch_bound_list[str(counter1)] = {}
169
+ patchbounds = [j - blsize, k - blsize, j - blsize + 2 * blsize, k - blsize + 2 * blsize]
170
+ patch_bound = [box[0] + patchbounds[1], box[1] + patchbounds[0], patchbounds[3] - patchbounds[1],
171
+ patchbounds[2] - patchbounds[0]]
172
+ patch_bound_list[str(counter1)]['rect'] = patch_bound
173
+ patch_bound_list[str(counter1)]['size'] = patch_bound[2]
174
+ counter1 = counter1 + 1
175
+ return patch_bound_list
176
+
177
+ # Generating local patches to perform the local refinement described in section 6 of the main paper.
178
+ def generatepatchs(img, base_size):
179
+
180
+ # Compute the gradients as a proxy of the contextual cues.
181
+ img_gray = rgb2gray(img)
182
+ whole_grad = np.abs(cv2.Sobel(img_gray, cv2.CV_64F, 0, 1, ksize=3)) +\
183
+ np.abs(cv2.Sobel(img_gray, cv2.CV_64F, 1, 0, ksize=3))
184
+
185
+ threshold = whole_grad[whole_grad > 0].mean()
186
+ whole_grad[whole_grad < threshold] = 0
187
+
188
+ # We use the integral image to speed-up the evaluation of the amount of gradients for each patch.
189
+ gf = whole_grad.sum()/len(whole_grad.reshape(-1))
190
+ grad_integral_image = cv2.integral(whole_grad)
191
+
192
+ # Variables are selected such that the initial patch size would be the receptive field size
193
+ # and the stride is set to 1/3 of the receptive field size.
194
+ blsize = int(round(base_size/2))
195
+ stride = int(round(blsize*0.75))
196
+
197
+ # Get initial Grid
198
+ patch_bound_list = applyGridpatch(blsize, stride, img, [0, 0, 0, 0])
199
+
200
+ # Refine initial Grid of patches by discarding the flat (in terms of gradients of the rgb image) ones. Refine
201
+ # each patch size to ensure that there will be enough depth cues for the network to generate a consistent depth map.
202
+ print("Selecting patches ...")
203
+ patch_bound_list = adaptiveselection(grad_integral_image, patch_bound_list, gf)
204
+
205
+ # Sort the patch list to make sure the merging operation will be done with the correct order: starting from biggest
206
+ # patch
207
+ patchset = sorted(patch_bound_list.items(), key=lambda x: getitem(x[1], 'size'), reverse=True)
208
+ return patchset
209
+
210
+ def getGF_fromintegral(integralimage, rect):
211
+ # Computes the gradient density of a given patch from the gradient integral image.
212
+ x1 = rect[1]
213
+ x2 = rect[1]+rect[3]
214
+ y1 = rect[0]
215
+ y2 = rect[0]+rect[2]
216
+ value = integralimage[x2, y2]-integralimage[x1, y2]-integralimage[x2, y1]+integralimage[x1, y1]
217
+ return value
218
+
219
+ # Adaptively select patches
220
+ def adaptiveselection(integral_grad, patch_bound_list, gf):
221
+ patchlist = {}
222
+ count = 0
223
+ height, width = integral_grad.shape
224
+
225
+ search_step = int(32/factor)
226
+
227
+ # Go through all patches
228
+ for c in range(len(patch_bound_list)):
229
+ # Get patch
230
+ bbox = patch_bound_list[str(c)]['rect']
231
+
232
+ # Compute the amount of gradients present in the patch from the integral image.
233
+ cgf = getGF_fromintegral(integral_grad, bbox)/(bbox[2]*bbox[3])
234
+
235
+ # Check if patching is beneficial by comparing the gradient density of the patch to
236
+ # the gradient density of the whole image
237
+ if cgf >= gf:
238
+ bbox_test = bbox.copy()
239
+ patchlist[str(count)] = {}
240
+
241
+ # Enlarge each patch until the gradient density of the patch is equal
242
+ # to the whole image gradient density
243
+ while True:
244
+
245
+ bbox_test[0] = bbox_test[0] - int(search_step/2)
246
+ bbox_test[1] = bbox_test[1] - int(search_step/2)
247
+
248
+ bbox_test[2] = bbox_test[2] + search_step
249
+ bbox_test[3] = bbox_test[3] + search_step
250
+
251
+ # Check if we are still within the image
252
+ if bbox_test[0] < 0 or bbox_test[1] < 0 or bbox_test[1] + bbox_test[3] >= height \
253
+ or bbox_test[0] + bbox_test[2] >= width:
254
+ break
255
+
256
+ # Compare gradient density
257
+ cgf = getGF_fromintegral(integral_grad, bbox_test)/(bbox_test[2]*bbox_test[3])
258
+ if cgf < gf:
259
+ break
260
+ bbox = bbox_test.copy()
261
+
262
+ # Add patch to selected patches
263
+ patchlist[str(count)]['rect'] = bbox
264
+ patchlist[str(count)]['size'] = bbox[2]
265
+ count = count + 1
266
+
267
+ # Return selected patches
268
+ return patchlist
269
+
270
+ def impatch(image, rect):
271
+ # Extract the given patch pixels from a given image.
272
+ w1 = rect[0]
273
+ h1 = rect[1]
274
+ w2 = w1 + rect[2]
275
+ h2 = h1 + rect[3]
276
+ image_patch = image[h1:h2, w1:w2]
277
+ return image_patch
278
+
279
+ class ImageandPatchs:
280
+ def __init__(self, root_dir, name, patchsinfo, rgb_image, scale=1):
281
+ self.root_dir = root_dir
282
+ self.patchsinfo = patchsinfo
283
+ self.name = name
284
+ self.patchs = patchsinfo
285
+ self.scale = scale
286
+
287
+ self.rgb_image = cv2.resize(rgb_image, (round(rgb_image.shape[1]*scale), round(rgb_image.shape[0]*scale)),
288
+ interpolation=cv2.INTER_CUBIC)
289
+
290
+ self.do_have_estimate = False
291
+ self.estimation_updated_image = None
292
+ self.estimation_base_image = None
293
+
294
+ def __len__(self):
295
+ return len(self.patchs)
296
+
297
+ def set_base_estimate(self, est):
298
+ self.estimation_base_image = est
299
+ if self.estimation_updated_image is not None:
300
+ self.do_have_estimate = True
301
+
302
+ def set_updated_estimate(self, est):
303
+ self.estimation_updated_image = est
304
+ if self.estimation_base_image is not None:
305
+ self.do_have_estimate = True
306
+
307
+ def __getitem__(self, index):
308
+ patch_id = int(self.patchs[index][0])
309
+ rect = np.array(self.patchs[index][1]['rect'])
310
+ msize = self.patchs[index][1]['size']
311
+
312
+ ## applying scale to rect:
313
+ rect = np.round(rect * self.scale)
314
+ rect = rect.astype('int')
315
+ msize = round(msize * self.scale)
316
+
317
+ patch_rgb = impatch(self.rgb_image, rect)
318
+ if self.do_have_estimate:
319
+ patch_whole_estimate_base = impatch(self.estimation_base_image, rect)
320
+ patch_whole_estimate_updated = impatch(self.estimation_updated_image, rect)
321
+ return {'patch_rgb': patch_rgb, 'patch_whole_estimate_base': patch_whole_estimate_base,
322
+ 'patch_whole_estimate_updated': patch_whole_estimate_updated, 'rect': rect,
323
+ 'size': msize, 'id': patch_id}
324
+ else:
325
+ return {'patch_rgb': patch_rgb, 'rect': rect, 'size': msize, 'id': patch_id}
326
+
327
+ def print_options(self, opt):
328
+ """Print and save options
329
+
330
+ It will print both current options and default values(if different).
331
+ It will save options into a text file / [checkpoints_dir] / opt.txt
332
+ """
333
+ message = ''
334
+ message += '----------------- Options ---------------\n'
335
+ for k, v in sorted(vars(opt).items()):
336
+ comment = ''
337
+ default = self.parser.get_default(k)
338
+ if v != default:
339
+ comment = '\t[default: %s]' % str(default)
340
+ message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
341
+ message += '----------------- End -------------------'
342
+ print(message)
343
+
344
+ # save to the disk
345
+ """
346
+ expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
347
+ util.mkdirs(expr_dir)
348
+ file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase))
349
+ with open(file_name, 'wt') as opt_file:
350
+ opt_file.write(message)
351
+ opt_file.write('\n')
352
+ """
353
+
354
+ def parse(self):
355
+ """Parse our options, create checkpoints directory suffix, and set up gpu device."""
356
+ opt = self.gather_options()
357
+ opt.isTrain = self.isTrain # train or test
358
+
359
+ # process opt.suffix
360
+ if opt.suffix:
361
+ suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
362
+ opt.name = opt.name + suffix
363
+
364
+ #self.print_options(opt)
365
+
366
+ # set gpu ids
367
+ str_ids = opt.gpu_ids.split(',')
368
+ opt.gpu_ids = []
369
+ for str_id in str_ids:
370
+ id = int(str_id)
371
+ if id >= 0:
372
+ opt.gpu_ids.append(id)
373
+ #if len(opt.gpu_ids) > 0:
374
+ # torch.cuda.set_device(opt.gpu_ids[0])
375
+
376
+ self.opt = opt
377
+ return self.opt
378
+
379
+
380
+ def estimateboost(img, model, model_type, pix2pixmodel, max_res=512, depthmap_script_boost_rmax=None):
381
+ global whole_size_threshold
382
+
383
+ # get settings
384
+ if depthmap_script_boost_rmax:
385
+ whole_size_threshold = depthmap_script_boost_rmax
386
+
387
+ if model_type == 0: #leres
388
+ net_receptive_field_size = 448
389
+ patch_netsize = 2 * net_receptive_field_size
390
+ elif model_type == 1: #dpt_beit_large_512
391
+ net_receptive_field_size = 512
392
+ patch_netsize = 2 * net_receptive_field_size
393
+ else: #other midas
394
+ net_receptive_field_size = 384
395
+ patch_netsize = 2 * net_receptive_field_size
396
+
397
+ gc.collect()
398
+ torch_gc()
399
+
400
+ # Generate mask used to smoothly blend the local pathc estimations to the base estimate.
401
+ # It is arbitrarily large to avoid artifacts during rescaling for each crop.
402
+ mask_org = generatemask((3000, 3000))
403
+ mask = mask_org.copy()
404
+
405
+ # Value x of R_x defined in the section 5 of the main paper.
406
+ r_threshold_value = 0.2
407
+ #if R0:
408
+ # r_threshold_value = 0
409
+
410
+ input_resolution = img.shape
411
+ scale_threshold = 3 # Allows up-scaling with a scale up to 3
412
+
413
+ # Find the best input resolution R-x. The resolution search described in section 5-double estimation of the main paper and section B of the
414
+ # supplementary material.
415
+ whole_image_optimal_size, patch_scale = calculateprocessingres(img, net_receptive_field_size, r_threshold_value, scale_threshold, whole_size_threshold)
416
+
417
+ # print('wholeImage being processed in :', whole_image_optimal_size)
418
+
419
+ # Generate the base estimate using the double estimation.
420
+ whole_estimate = doubleestimate(img, net_receptive_field_size, whole_image_optimal_size, pix2pixsize, model, model_type, pix2pixmodel)
421
+
422
+ # Compute the multiplier described in section 6 of the main paper to make sure our initial patch can select
423
+ # small high-density regions of the image.
424
+ global factor
425
+ factor = max(min(1, 4 * patch_scale * whole_image_optimal_size / whole_size_threshold), 0.2)
426
+ # print('Adjust factor is:', 1/factor)
427
+
428
+ # Check if Local boosting is beneficial.
429
+ if max_res < whole_image_optimal_size:
430
+ # print("No Local boosting. Specified Max Res is smaller than R20, Returning doubleestimate result")
431
+ return cv2.resize(whole_estimate, (input_resolution[1], input_resolution[0]), interpolation=cv2.INTER_CUBIC)
432
+
433
+ # Compute the default target resolution.
434
+ if img.shape[0] > img.shape[1]:
435
+ a = 2 * whole_image_optimal_size
436
+ b = round(2 * whole_image_optimal_size * img.shape[1] / img.shape[0])
437
+ else:
438
+ a = round(2 * whole_image_optimal_size * img.shape[0] / img.shape[1])
439
+ b = 2 * whole_image_optimal_size
440
+ b = int(round(b / factor))
441
+ a = int(round(a / factor))
442
+
443
+ """
444
+ # recompute a, b and saturate to max res.
445
+ if max(a,b) > max_res:
446
+ print('Default Res is higher than max-res: Reducing final resolution')
447
+ if img.shape[0] > img.shape[1]:
448
+ a = max_res
449
+ b = round(max_res * img.shape[1] / img.shape[0])
450
+ else:
451
+ a = round(max_res * img.shape[0] / img.shape[1])
452
+ b = max_res
453
+ b = int(b)
454
+ a = int(a)
455
+ """
456
+
457
+ img = cv2.resize(img, (b, a), interpolation=cv2.INTER_CUBIC)
458
+
459
+ # Extract selected patches for local refinement
460
+ base_size = net_receptive_field_size * 2
461
+ patchset = generatepatchs(img, base_size)
462
+
463
+ # print('Target resolution: ', img.shape)
464
+
465
+ # Computing a scale in case user prompted to generate the results as the same resolution of the input.
466
+ # Notice that our method output resolution is independent of the input resolution and this parameter will only
467
+ # enable a scaling operation during the local patch merge implementation to generate results with the same resolution
468
+ # as the input.
469
+ """
470
+ if output_resolution == 1:
471
+ mergein_scale = input_resolution[0] / img.shape[0]
472
+ print('Dynamicly change merged-in resolution; scale:', mergein_scale)
473
+ else:
474
+ mergein_scale = 1
475
+ """
476
+ # always rescale to input res for now
477
+ mergein_scale = input_resolution[0] / img.shape[0]
478
+
479
+ imageandpatchs = ImageandPatchs('', '', patchset, img, mergein_scale)
480
+ whole_estimate_resized = cv2.resize(whole_estimate, (round(img.shape[1]*mergein_scale),
481
+ round(img.shape[0]*mergein_scale)), interpolation=cv2.INTER_CUBIC)
482
+ imageandpatchs.set_base_estimate(whole_estimate_resized.copy())
483
+ imageandpatchs.set_updated_estimate(whole_estimate_resized.copy())
484
+
485
+ print('Resulting depthmap resolution will be :', whole_estimate_resized.shape[:2])
486
+ print('Patches to process: '+str(len(imageandpatchs)))
487
+
488
+ # Enumerate through all patches, generate their estimations and refining the base estimate.
489
+ for patch_ind in range(len(imageandpatchs)):
490
+
491
+ # Get patch information
492
+ patch = imageandpatchs[patch_ind] # patch object
493
+ patch_rgb = patch['patch_rgb'] # rgb patch
494
+ patch_whole_estimate_base = patch['patch_whole_estimate_base'] # corresponding patch from base
495
+ rect = patch['rect'] # patch size and location
496
+ patch_id = patch['id'] # patch ID
497
+ org_size = patch_whole_estimate_base.shape # the original size from the unscaled input
498
+ print('\t Processing patch', patch_ind, '/', len(imageandpatchs)-1, '|', rect)
499
+
500
+ # We apply double estimation for patches. The high resolution value is fixed to twice the receptive
501
+ # field size of the network for patches to accelerate the process.
502
+ patch_estimation = doubleestimate(patch_rgb, net_receptive_field_size, patch_netsize, pix2pixsize, model, model_type, pix2pixmodel)
503
+ patch_estimation = cv2.resize(patch_estimation, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
504
+ patch_whole_estimate_base = cv2.resize(patch_whole_estimate_base, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
505
+
506
+ # Merging the patch estimation into the base estimate using our merge network:
507
+ # We feed the patch estimation and the same region from the updated base estimate to the merge network
508
+ # to generate the target estimate for the corresponding region.
509
+ pix2pixmodel.set_input(patch_whole_estimate_base, patch_estimation)
510
+
511
+ # Run merging network
512
+ pix2pixmodel.test()
513
+ visuals = pix2pixmodel.get_current_visuals()
514
+
515
+ prediction_mapped = visuals['fake_B']
516
+ prediction_mapped = (prediction_mapped+1)/2
517
+ prediction_mapped = prediction_mapped.squeeze().cpu().numpy()
518
+
519
+ mapped = prediction_mapped
520
+
521
+ # We use a simple linear polynomial to make sure the result of the merge network would match the values of
522
+ # base estimate
523
+ p_coef = np.polyfit(mapped.reshape(-1), patch_whole_estimate_base.reshape(-1), deg=1)
524
+ merged = np.polyval(p_coef, mapped.reshape(-1)).reshape(mapped.shape)
525
+
526
+ merged = cv2.resize(merged, (org_size[1],org_size[0]), interpolation=cv2.INTER_CUBIC)
527
+
528
+ # Get patch size and location
529
+ w1 = rect[0]
530
+ h1 = rect[1]
531
+ w2 = w1 + rect[2]
532
+ h2 = h1 + rect[3]
533
+
534
+ # To speed up the implementation, we only generate the Gaussian mask once with a sufficiently large size
535
+ # and resize it to our needed size while merging the patches.
536
+ if mask.shape != org_size:
537
+ mask = cv2.resize(mask_org, (org_size[1],org_size[0]), interpolation=cv2.INTER_LINEAR)
538
+
539
+ tobemergedto = imageandpatchs.estimation_updated_image
540
+
541
+ # Update the whole estimation:
542
+ # We use a simple Gaussian mask to blend the merged patch region with the base estimate to ensure seamless
543
+ # blending at the boundaries of the patch region.
544
+ tobemergedto[h1:h2, w1:w2] = np.multiply(tobemergedto[h1:h2, w1:w2], 1 - mask) + np.multiply(merged, mask)
545
+ imageandpatchs.set_updated_estimate(tobemergedto)
546
+
547
+ # output
548
+ return cv2.resize(imageandpatchs.estimation_updated_image, (input_resolution[1], input_resolution[0]), interpolation=cv2.INTER_CUBIC)
controlnet_aux/leres/leres/multi_depth_model_woauxi.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from . import network_auxi as network
5
+ from .net_tools import get_func
6
+
7
+
8
+ class RelDepthModel(nn.Module):
9
+ def __init__(self, backbone='resnet50'):
10
+ super(RelDepthModel, self).__init__()
11
+ if backbone == 'resnet50':
12
+ encoder = 'resnet50_stride32'
13
+ elif backbone == 'resnext101':
14
+ encoder = 'resnext101_stride32x8d'
15
+ self.depth_model = DepthModel(encoder)
16
+
17
+ def inference(self, rgb):
18
+ with torch.no_grad():
19
+ input = rgb.to(self.depth_model.device)
20
+ depth = self.depth_model(input)
21
+ #pred_depth_out = depth - depth.min() + 0.01
22
+ return depth #pred_depth_out
23
+
24
+
25
+ class DepthModel(nn.Module):
26
+ def __init__(self, encoder):
27
+ super(DepthModel, self).__init__()
28
+ backbone = network.__name__.split('.')[-1] + '.' + encoder
29
+ self.encoder_modules = get_func(backbone)()
30
+ self.decoder_modules = network.Decoder()
31
+
32
+ def forward(self, x):
33
+ lateral_out = self.encoder_modules(x)
34
+ out_logit = self.decoder_modules(lateral_out)
35
+ return out_logit
controlnet_aux/leres/leres/net_tools.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ import torch
3
+ import os
4
+ from collections import OrderedDict
5
+
6
+
7
+ def get_func(func_name):
8
+ """Helper to return a function object by name. func_name must identify a
9
+ function in this module or the path to a function relative to the base
10
+ 'modeling' module.
11
+ """
12
+ if func_name == '':
13
+ return None
14
+ try:
15
+ parts = func_name.split('.')
16
+ # Refers to a function in this module
17
+ if len(parts) == 1:
18
+ return globals()[parts[0]]
19
+ # Otherwise, assume we're referencing a module under modeling
20
+ module_name = 'controlnet_aux.leres.leres.' + '.'.join(parts[:-1])
21
+ module = importlib.import_module(module_name)
22
+ return getattr(module, parts[-1])
23
+ except Exception:
24
+ print('Failed to f1ind function: %s', func_name)
25
+ raise
26
+
27
+ def load_ckpt(args, depth_model, shift_model, focal_model):
28
+ """
29
+ Load checkpoint.
30
+ """
31
+ if os.path.isfile(args.load_ckpt):
32
+ print("loading checkpoint %s" % args.load_ckpt)
33
+ checkpoint = torch.load(args.load_ckpt)
34
+ if shift_model is not None:
35
+ shift_model.load_state_dict(strip_prefix_if_present(checkpoint['shift_model'], 'module.'),
36
+ strict=True)
37
+ if focal_model is not None:
38
+ focal_model.load_state_dict(strip_prefix_if_present(checkpoint['focal_model'], 'module.'),
39
+ strict=True)
40
+ depth_model.load_state_dict(strip_prefix_if_present(checkpoint['depth_model'], "module."),
41
+ strict=True)
42
+ del checkpoint
43
+ if torch.cuda.is_available():
44
+ torch.cuda.empty_cache()
45
+
46
+
47
+ def strip_prefix_if_present(state_dict, prefix):
48
+ keys = sorted(state_dict.keys())
49
+ if not all(key.startswith(prefix) for key in keys):
50
+ return state_dict
51
+ stripped_state_dict = OrderedDict()
52
+ for key, value in state_dict.items():
53
+ stripped_state_dict[key.replace(prefix, "")] = value
54
+ return stripped_state_dict
controlnet_aux/leres/leres/network_auxi.py ADDED
@@ -0,0 +1,417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.init as init
4
+
5
+ from . import Resnet, Resnext_torch
6
+
7
+
8
+ def resnet50_stride32():
9
+ return DepthNet(backbone='resnet', depth=50, upfactors=[2, 2, 2, 2])
10
+
11
+ def resnext101_stride32x8d():
12
+ return DepthNet(backbone='resnext101_32x8d', depth=101, upfactors=[2, 2, 2, 2])
13
+
14
+
15
+ class Decoder(nn.Module):
16
+ def __init__(self):
17
+ super(Decoder, self).__init__()
18
+ self.inchannels = [256, 512, 1024, 2048]
19
+ self.midchannels = [256, 256, 256, 512]
20
+ self.upfactors = [2,2,2,2]
21
+ self.outchannels = 1
22
+
23
+ self.conv = FTB(inchannels=self.inchannels[3], midchannels=self.midchannels[3])
24
+ self.conv1 = nn.Conv2d(in_channels=self.midchannels[3], out_channels=self.midchannels[2], kernel_size=3, padding=1, stride=1, bias=True)
25
+ self.upsample = nn.Upsample(scale_factor=self.upfactors[3], mode='bilinear', align_corners=True)
26
+
27
+ self.ffm2 = FFM(inchannels=self.inchannels[2], midchannels=self.midchannels[2], outchannels = self.midchannels[2], upfactor=self.upfactors[2])
28
+ self.ffm1 = FFM(inchannels=self.inchannels[1], midchannels=self.midchannels[1], outchannels = self.midchannels[1], upfactor=self.upfactors[1])
29
+ self.ffm0 = FFM(inchannels=self.inchannels[0], midchannels=self.midchannels[0], outchannels = self.midchannels[0], upfactor=self.upfactors[0])
30
+
31
+ self.outconv = AO(inchannels=self.midchannels[0], outchannels=self.outchannels, upfactor=2)
32
+ self._init_params()
33
+
34
+ def _init_params(self):
35
+ for m in self.modules():
36
+ if isinstance(m, nn.Conv2d):
37
+ init.normal_(m.weight, std=0.01)
38
+ if m.bias is not None:
39
+ init.constant_(m.bias, 0)
40
+ elif isinstance(m, nn.ConvTranspose2d):
41
+ init.normal_(m.weight, std=0.01)
42
+ if m.bias is not None:
43
+ init.constant_(m.bias, 0)
44
+ elif isinstance(m, nn.BatchNorm2d): #NN.BatchNorm2d
45
+ init.constant_(m.weight, 1)
46
+ init.constant_(m.bias, 0)
47
+ elif isinstance(m, nn.Linear):
48
+ init.normal_(m.weight, std=0.01)
49
+ if m.bias is not None:
50
+ init.constant_(m.bias, 0)
51
+
52
+ def forward(self, features):
53
+ x_32x = self.conv(features[3]) # 1/32
54
+ x_32 = self.conv1(x_32x)
55
+ x_16 = self.upsample(x_32) # 1/16
56
+
57
+ x_8 = self.ffm2(features[2], x_16) # 1/8
58
+ x_4 = self.ffm1(features[1], x_8) # 1/4
59
+ x_2 = self.ffm0(features[0], x_4) # 1/2
60
+ #-----------------------------------------
61
+ x = self.outconv(x_2) # original size
62
+ return x
63
+
64
+ class DepthNet(nn.Module):
65
+ __factory = {
66
+ 18: Resnet.resnet18,
67
+ 34: Resnet.resnet34,
68
+ 50: Resnet.resnet50,
69
+ 101: Resnet.resnet101,
70
+ 152: Resnet.resnet152
71
+ }
72
+ def __init__(self,
73
+ backbone='resnet',
74
+ depth=50,
75
+ upfactors=[2, 2, 2, 2]):
76
+ super(DepthNet, self).__init__()
77
+ self.backbone = backbone
78
+ self.depth = depth
79
+ self.pretrained = False
80
+ self.inchannels = [256, 512, 1024, 2048]
81
+ self.midchannels = [256, 256, 256, 512]
82
+ self.upfactors = upfactors
83
+ self.outchannels = 1
84
+
85
+ # Build model
86
+ if self.backbone == 'resnet':
87
+ if self.depth not in DepthNet.__factory:
88
+ raise KeyError("Unsupported depth:", self.depth)
89
+ self.encoder = DepthNet.__factory[depth](pretrained=self.pretrained)
90
+ elif self.backbone == 'resnext101_32x8d':
91
+ self.encoder = Resnext_torch.resnext101_32x8d(pretrained=self.pretrained)
92
+ else:
93
+ self.encoder = Resnext_torch.resnext101(pretrained=self.pretrained)
94
+
95
+ def forward(self, x):
96
+ x = self.encoder(x) # 1/32, 1/16, 1/8, 1/4
97
+ return x
98
+
99
+
100
+ class FTB(nn.Module):
101
+ def __init__(self, inchannels, midchannels=512):
102
+ super(FTB, self).__init__()
103
+ self.in1 = inchannels
104
+ self.mid = midchannels
105
+ self.conv1 = nn.Conv2d(in_channels=self.in1, out_channels=self.mid, kernel_size=3, padding=1, stride=1,
106
+ bias=True)
107
+ # NN.BatchNorm2d
108
+ self.conv_branch = nn.Sequential(nn.ReLU(inplace=True), \
109
+ nn.Conv2d(in_channels=self.mid, out_channels=self.mid, kernel_size=3,
110
+ padding=1, stride=1, bias=True), \
111
+ nn.BatchNorm2d(num_features=self.mid), \
112
+ nn.ReLU(inplace=True), \
113
+ nn.Conv2d(in_channels=self.mid, out_channels=self.mid, kernel_size=3,
114
+ padding=1, stride=1, bias=True))
115
+ self.relu = nn.ReLU(inplace=True)
116
+
117
+ self.init_params()
118
+
119
+ def forward(self, x):
120
+ x = self.conv1(x)
121
+ x = x + self.conv_branch(x)
122
+ x = self.relu(x)
123
+
124
+ return x
125
+
126
+ def init_params(self):
127
+ for m in self.modules():
128
+ if isinstance(m, nn.Conv2d):
129
+ init.normal_(m.weight, std=0.01)
130
+ if m.bias is not None:
131
+ init.constant_(m.bias, 0)
132
+ elif isinstance(m, nn.ConvTranspose2d):
133
+ # init.kaiming_normal_(m.weight, mode='fan_out')
134
+ init.normal_(m.weight, std=0.01)
135
+ # init.xavier_normal_(m.weight)
136
+ if m.bias is not None:
137
+ init.constant_(m.bias, 0)
138
+ elif isinstance(m, nn.BatchNorm2d): # NN.BatchNorm2d
139
+ init.constant_(m.weight, 1)
140
+ init.constant_(m.bias, 0)
141
+ elif isinstance(m, nn.Linear):
142
+ init.normal_(m.weight, std=0.01)
143
+ if m.bias is not None:
144
+ init.constant_(m.bias, 0)
145
+
146
+
147
+ class ATA(nn.Module):
148
+ def __init__(self, inchannels, reduction=8):
149
+ super(ATA, self).__init__()
150
+ self.inchannels = inchannels
151
+ self.avg_pool = nn.AdaptiveAvgPool2d(1)
152
+ self.fc = nn.Sequential(nn.Linear(self.inchannels * 2, self.inchannels // reduction),
153
+ nn.ReLU(inplace=True),
154
+ nn.Linear(self.inchannels // reduction, self.inchannels),
155
+ nn.Sigmoid())
156
+ self.init_params()
157
+
158
+ def forward(self, low_x, high_x):
159
+ n, c, _, _ = low_x.size()
160
+ x = torch.cat([low_x, high_x], 1)
161
+ x = self.avg_pool(x)
162
+ x = x.view(n, -1)
163
+ x = self.fc(x).view(n, c, 1, 1)
164
+ x = low_x * x + high_x
165
+
166
+ return x
167
+
168
+ def init_params(self):
169
+ for m in self.modules():
170
+ if isinstance(m, nn.Conv2d):
171
+ # init.kaiming_normal_(m.weight, mode='fan_out')
172
+ # init.normal(m.weight, std=0.01)
173
+ init.xavier_normal_(m.weight)
174
+ if m.bias is not None:
175
+ init.constant_(m.bias, 0)
176
+ elif isinstance(m, nn.ConvTranspose2d):
177
+ # init.kaiming_normal_(m.weight, mode='fan_out')
178
+ # init.normal_(m.weight, std=0.01)
179
+ init.xavier_normal_(m.weight)
180
+ if m.bias is not None:
181
+ init.constant_(m.bias, 0)
182
+ elif isinstance(m, nn.BatchNorm2d): # NN.BatchNorm2d
183
+ init.constant_(m.weight, 1)
184
+ init.constant_(m.bias, 0)
185
+ elif isinstance(m, nn.Linear):
186
+ init.normal_(m.weight, std=0.01)
187
+ if m.bias is not None:
188
+ init.constant_(m.bias, 0)
189
+
190
+
191
+ class FFM(nn.Module):
192
+ def __init__(self, inchannels, midchannels, outchannels, upfactor=2):
193
+ super(FFM, self).__init__()
194
+ self.inchannels = inchannels
195
+ self.midchannels = midchannels
196
+ self.outchannels = outchannels
197
+ self.upfactor = upfactor
198
+
199
+ self.ftb1 = FTB(inchannels=self.inchannels, midchannels=self.midchannels)
200
+ # self.ata = ATA(inchannels = self.midchannels)
201
+ self.ftb2 = FTB(inchannels=self.midchannels, midchannels=self.outchannels)
202
+
203
+ self.upsample = nn.Upsample(scale_factor=self.upfactor, mode='bilinear', align_corners=True)
204
+
205
+ self.init_params()
206
+
207
+ def forward(self, low_x, high_x):
208
+ x = self.ftb1(low_x)
209
+ x = x + high_x
210
+ x = self.ftb2(x)
211
+ x = self.upsample(x)
212
+
213
+ return x
214
+
215
+ def init_params(self):
216
+ for m in self.modules():
217
+ if isinstance(m, nn.Conv2d):
218
+ # init.kaiming_normal_(m.weight, mode='fan_out')
219
+ init.normal_(m.weight, std=0.01)
220
+ # init.xavier_normal_(m.weight)
221
+ if m.bias is not None:
222
+ init.constant_(m.bias, 0)
223
+ elif isinstance(m, nn.ConvTranspose2d):
224
+ # init.kaiming_normal_(m.weight, mode='fan_out')
225
+ init.normal_(m.weight, std=0.01)
226
+ # init.xavier_normal_(m.weight)
227
+ if m.bias is not None:
228
+ init.constant_(m.bias, 0)
229
+ elif isinstance(m, nn.BatchNorm2d): # NN.Batchnorm2d
230
+ init.constant_(m.weight, 1)
231
+ init.constant_(m.bias, 0)
232
+ elif isinstance(m, nn.Linear):
233
+ init.normal_(m.weight, std=0.01)
234
+ if m.bias is not None:
235
+ init.constant_(m.bias, 0)
236
+
237
+
238
+ class AO(nn.Module):
239
+ # Adaptive output module
240
+ def __init__(self, inchannels, outchannels, upfactor=2):
241
+ super(AO, self).__init__()
242
+ self.inchannels = inchannels
243
+ self.outchannels = outchannels
244
+ self.upfactor = upfactor
245
+
246
+ self.adapt_conv = nn.Sequential(
247
+ nn.Conv2d(in_channels=self.inchannels, out_channels=self.inchannels // 2, kernel_size=3, padding=1,
248
+ stride=1, bias=True), \
249
+ nn.BatchNorm2d(num_features=self.inchannels // 2), \
250
+ nn.ReLU(inplace=True), \
251
+ nn.Conv2d(in_channels=self.inchannels // 2, out_channels=self.outchannels, kernel_size=3, padding=1,
252
+ stride=1, bias=True), \
253
+ nn.Upsample(scale_factor=self.upfactor, mode='bilinear', align_corners=True))
254
+
255
+ self.init_params()
256
+
257
+ def forward(self, x):
258
+ x = self.adapt_conv(x)
259
+ return x
260
+
261
+ def init_params(self):
262
+ for m in self.modules():
263
+ if isinstance(m, nn.Conv2d):
264
+ # init.kaiming_normal_(m.weight, mode='fan_out')
265
+ init.normal_(m.weight, std=0.01)
266
+ # init.xavier_normal_(m.weight)
267
+ if m.bias is not None:
268
+ init.constant_(m.bias, 0)
269
+ elif isinstance(m, nn.ConvTranspose2d):
270
+ # init.kaiming_normal_(m.weight, mode='fan_out')
271
+ init.normal_(m.weight, std=0.01)
272
+ # init.xavier_normal_(m.weight)
273
+ if m.bias is not None:
274
+ init.constant_(m.bias, 0)
275
+ elif isinstance(m, nn.BatchNorm2d): # NN.Batchnorm2d
276
+ init.constant_(m.weight, 1)
277
+ init.constant_(m.bias, 0)
278
+ elif isinstance(m, nn.Linear):
279
+ init.normal_(m.weight, std=0.01)
280
+ if m.bias is not None:
281
+ init.constant_(m.bias, 0)
282
+
283
+
284
+
285
+ # ==============================================================================================================
286
+
287
+
288
+ class ResidualConv(nn.Module):
289
+ def __init__(self, inchannels):
290
+ super(ResidualConv, self).__init__()
291
+ # NN.BatchNorm2d
292
+ self.conv = nn.Sequential(
293
+ # nn.BatchNorm2d(num_features=inchannels),
294
+ nn.ReLU(inplace=False),
295
+ # nn.Conv2d(in_channels=inchannels, out_channels=inchannels, kernel_size=3, padding=1, stride=1, groups=inchannels,bias=True),
296
+ # nn.Conv2d(in_channels=inchannels, out_channels=inchannels, kernel_size=1, padding=0, stride=1, groups=1,bias=True)
297
+ nn.Conv2d(in_channels=inchannels, out_channels=inchannels / 2, kernel_size=3, padding=1, stride=1,
298
+ bias=False),
299
+ nn.BatchNorm2d(num_features=inchannels / 2),
300
+ nn.ReLU(inplace=False),
301
+ nn.Conv2d(in_channels=inchannels / 2, out_channels=inchannels, kernel_size=3, padding=1, stride=1,
302
+ bias=False)
303
+ )
304
+ self.init_params()
305
+
306
+ def forward(self, x):
307
+ x = self.conv(x) + x
308
+ return x
309
+
310
+ def init_params(self):
311
+ for m in self.modules():
312
+ if isinstance(m, nn.Conv2d):
313
+ # init.kaiming_normal_(m.weight, mode='fan_out')
314
+ init.normal_(m.weight, std=0.01)
315
+ # init.xavier_normal_(m.weight)
316
+ if m.bias is not None:
317
+ init.constant_(m.bias, 0)
318
+ elif isinstance(m, nn.ConvTranspose2d):
319
+ # init.kaiming_normal_(m.weight, mode='fan_out')
320
+ init.normal_(m.weight, std=0.01)
321
+ # init.xavier_normal_(m.weight)
322
+ if m.bias is not None:
323
+ init.constant_(m.bias, 0)
324
+ elif isinstance(m, nn.BatchNorm2d): # NN.BatchNorm2d
325
+ init.constant_(m.weight, 1)
326
+ init.constant_(m.bias, 0)
327
+ elif isinstance(m, nn.Linear):
328
+ init.normal_(m.weight, std=0.01)
329
+ if m.bias is not None:
330
+ init.constant_(m.bias, 0)
331
+
332
+
333
+ class FeatureFusion(nn.Module):
334
+ def __init__(self, inchannels, outchannels):
335
+ super(FeatureFusion, self).__init__()
336
+ self.conv = ResidualConv(inchannels=inchannels)
337
+ # NN.BatchNorm2d
338
+ self.up = nn.Sequential(ResidualConv(inchannels=inchannels),
339
+ nn.ConvTranspose2d(in_channels=inchannels, out_channels=outchannels, kernel_size=3,
340
+ stride=2, padding=1, output_padding=1),
341
+ nn.BatchNorm2d(num_features=outchannels),
342
+ nn.ReLU(inplace=True))
343
+
344
+ def forward(self, lowfeat, highfeat):
345
+ return self.up(highfeat + self.conv(lowfeat))
346
+
347
+ def init_params(self):
348
+ for m in self.modules():
349
+ if isinstance(m, nn.Conv2d):
350
+ # init.kaiming_normal_(m.weight, mode='fan_out')
351
+ init.normal_(m.weight, std=0.01)
352
+ # init.xavier_normal_(m.weight)
353
+ if m.bias is not None:
354
+ init.constant_(m.bias, 0)
355
+ elif isinstance(m, nn.ConvTranspose2d):
356
+ # init.kaiming_normal_(m.weight, mode='fan_out')
357
+ init.normal_(m.weight, std=0.01)
358
+ # init.xavier_normal_(m.weight)
359
+ if m.bias is not None:
360
+ init.constant_(m.bias, 0)
361
+ elif isinstance(m, nn.BatchNorm2d): # NN.BatchNorm2d
362
+ init.constant_(m.weight, 1)
363
+ init.constant_(m.bias, 0)
364
+ elif isinstance(m, nn.Linear):
365
+ init.normal_(m.weight, std=0.01)
366
+ if m.bias is not None:
367
+ init.constant_(m.bias, 0)
368
+
369
+
370
+ class SenceUnderstand(nn.Module):
371
+ def __init__(self, channels):
372
+ super(SenceUnderstand, self).__init__()
373
+ self.channels = channels
374
+ self.conv1 = nn.Sequential(nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, padding=1),
375
+ nn.ReLU(inplace=True))
376
+ self.pool = nn.AdaptiveAvgPool2d(8)
377
+ self.fc = nn.Sequential(nn.Linear(512 * 8 * 8, self.channels),
378
+ nn.ReLU(inplace=True))
379
+ self.conv2 = nn.Sequential(
380
+ nn.Conv2d(in_channels=self.channels, out_channels=self.channels, kernel_size=1, padding=0),
381
+ nn.ReLU(inplace=True))
382
+ self.initial_params()
383
+
384
+ def forward(self, x):
385
+ n, c, h, w = x.size()
386
+ x = self.conv1(x)
387
+ x = self.pool(x)
388
+ x = x.view(n, -1)
389
+ x = self.fc(x)
390
+ x = x.view(n, self.channels, 1, 1)
391
+ x = self.conv2(x)
392
+ x = x.repeat(1, 1, h, w)
393
+ return x
394
+
395
+ def initial_params(self, dev=0.01):
396
+ for m in self.modules():
397
+ if isinstance(m, nn.Conv2d):
398
+ # print torch.sum(m.weight)
399
+ m.weight.data.normal_(0, dev)
400
+ if m.bias is not None:
401
+ m.bias.data.fill_(0)
402
+ elif isinstance(m, nn.ConvTranspose2d):
403
+ # print torch.sum(m.weight)
404
+ m.weight.data.normal_(0, dev)
405
+ if m.bias is not None:
406
+ m.bias.data.fill_(0)
407
+ elif isinstance(m, nn.Linear):
408
+ m.weight.data.normal_(0, dev)
409
+
410
+
411
+ if __name__ == '__main__':
412
+ net = DepthNet(depth=50, pretrained=True)
413
+ print(net)
414
+ inputs = torch.ones(4,3,128,128)
415
+ out = net(inputs)
416
+ print(out.size())
417
+
controlnet_aux/leres/pix2pix/LICENSE ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ https://github.com/compphoto/BoostingMonocularDepth
2
+
3
+ Copyright 2021, Seyed Mahdi Hosseini Miangoleh, Sebastian Dille, Computational Photography Laboratory. All rights reserved.
4
+
5
+ This software is for academic use only. A redistribution of this
6
+ software, with or without modifications, has to be for academic
7
+ use only, while giving the appropriate credit to the original
8
+ authors of the software. The methods implemented as a part of
9
+ this software may be covered under patents or patent applications.
10
+
11
+ THIS SOFTWARE IS PROVIDED BY THE AUTHOR ''AS IS'' AND ANY EXPRESS OR IMPLIED
12
+ WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
13
+ FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
14
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
15
+ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
16
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
17
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
18
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
19
+ ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
controlnet_aux/leres/pix2pix/__init__.py ADDED
File without changes
controlnet_aux/leres/pix2pix/models/__init__.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This package contains modules related to objective functions, optimizations, and network architectures.
2
+
3
+ To add a custom model class called 'dummy', you need to add a file called 'dummy_model.py' and define a subclass DummyModel inherited from BaseModel.
4
+ You need to implement the following five functions:
5
+ -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
6
+ -- <set_input>: unpack data from dataset and apply preprocessing.
7
+ -- <forward>: produce intermediate results.
8
+ -- <optimize_parameters>: calculate loss, gradients, and update network weights.
9
+ -- <modify_commandline_options>: (optionally) add model-specific options and set default options.
10
+
11
+ In the function <__init__>, you need to define four lists:
12
+ -- self.loss_names (str list): specify the training losses that you want to plot and save.
13
+ -- self.model_names (str list): define networks used in our training.
14
+ -- self.visual_names (str list): specify the images that you want to display and save.
15
+ -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an usage.
16
+
17
+ Now you can use the model class by specifying flag '--model dummy'.
18
+ See our template model class 'template_model.py' for more details.
19
+ """
20
+
21
+ import importlib
22
+ from .base_model import BaseModel
23
+
24
+
25
+ def find_model_using_name(model_name):
26
+ """Import the module "models/[model_name]_model.py".
27
+
28
+ In the file, the class called DatasetNameModel() will
29
+ be instantiated. It has to be a subclass of BaseModel,
30
+ and it is case-insensitive.
31
+ """
32
+ model_filename = "controlnet_aux.leres.pix2pix.models." + model_name + "_model"
33
+ modellib = importlib.import_module(model_filename)
34
+ model = None
35
+ target_model_name = model_name.replace('_', '') + 'model'
36
+ for name, cls in modellib.__dict__.items():
37
+ if name.lower() == target_model_name.lower() \
38
+ and issubclass(cls, BaseModel):
39
+ model = cls
40
+
41
+ if model is None:
42
+ print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name))
43
+ exit(0)
44
+
45
+ return model
46
+
47
+
48
+ def get_option_setter(model_name):
49
+ """Return the static method <modify_commandline_options> of the model class."""
50
+ model_class = find_model_using_name(model_name)
51
+ return model_class.modify_commandline_options
52
+
53
+
54
+ def create_model(opt):
55
+ """Create a model given the option.
56
+
57
+ This function warps the class CustomDatasetDataLoader.
58
+ This is the main interface between this package and 'train.py'/'test.py'
59
+
60
+ Example:
61
+ >>> from models import create_model
62
+ >>> model = create_model(opt)
63
+ """
64
+ model = find_model_using_name(opt.model)
65
+ instance = model(opt)
66
+ print("model [%s] was created" % type(instance).__name__)
67
+ return instance
controlnet_aux/leres/pix2pix/models/base_model.py ADDED
@@ -0,0 +1,244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gc
2
+ import os
3
+ from abc import ABC, abstractmethod
4
+ from collections import OrderedDict
5
+
6
+ import torch
7
+
8
+ from ....util import torch_gc
9
+ from . import networks
10
+
11
+
12
+ class BaseModel(ABC):
13
+ """This class is an abstract base class (ABC) for models.
14
+ To create a subclass, you need to implement the following five functions:
15
+ -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
16
+ -- <set_input>: unpack data from dataset and apply preprocessing.
17
+ -- <forward>: produce intermediate results.
18
+ -- <optimize_parameters>: calculate losses, gradients, and update network weights.
19
+ -- <modify_commandline_options>: (optionally) add model-specific options and set default options.
20
+ """
21
+
22
+ def __init__(self, opt):
23
+ """Initialize the BaseModel class.
24
+
25
+ Parameters:
26
+ opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
27
+
28
+ When creating your custom class, you need to implement your own initialization.
29
+ In this function, you should first call <BaseModel.__init__(self, opt)>
30
+ Then, you need to define four lists:
31
+ -- self.loss_names (str list): specify the training losses that you want to plot and save.
32
+ -- self.model_names (str list): define networks used in our training.
33
+ -- self.visual_names (str list): specify the images that you want to display and save.
34
+ -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example.
35
+ """
36
+ self.opt = opt
37
+ self.gpu_ids = opt.gpu_ids
38
+ self.isTrain = opt.isTrain
39
+ self.device = torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') # get device name: CPU or GPU
40
+ self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) # save all the checkpoints to save_dir
41
+ if opt.preprocess != 'scale_width': # with [scale_width], input images might have different sizes, which hurts the performance of cudnn.benchmark.
42
+ torch.backends.cudnn.benchmark = True
43
+ self.loss_names = []
44
+ self.model_names = []
45
+ self.visual_names = []
46
+ self.optimizers = []
47
+ self.image_paths = []
48
+ self.metric = 0 # used for learning rate policy 'plateau'
49
+
50
+ @staticmethod
51
+ def modify_commandline_options(parser, is_train):
52
+ """Add new model-specific options, and rewrite default values for existing options.
53
+
54
+ Parameters:
55
+ parser -- original option parser
56
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
57
+
58
+ Returns:
59
+ the modified parser.
60
+ """
61
+ return parser
62
+
63
+ @abstractmethod
64
+ def set_input(self, input):
65
+ """Unpack input data from the dataloader and perform necessary pre-processing steps.
66
+
67
+ Parameters:
68
+ input (dict): includes the data itself and its metadata information.
69
+ """
70
+ pass
71
+
72
+ @abstractmethod
73
+ def forward(self):
74
+ """Run forward pass; called by both functions <optimize_parameters> and <test>."""
75
+ pass
76
+
77
+ @abstractmethod
78
+ def optimize_parameters(self):
79
+ """Calculate losses, gradients, and update network weights; called in every training iteration"""
80
+ pass
81
+
82
+ def setup(self, opt):
83
+ """Load and print networks; create schedulers
84
+
85
+ Parameters:
86
+ opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
87
+ """
88
+ if self.isTrain:
89
+ self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers]
90
+ if not self.isTrain or opt.continue_train:
91
+ load_suffix = 'iter_%d' % opt.load_iter if opt.load_iter > 0 else opt.epoch
92
+ self.load_networks(load_suffix)
93
+ self.print_networks(opt.verbose)
94
+
95
+ def eval(self):
96
+ """Make models eval mode during test time"""
97
+ for name in self.model_names:
98
+ if isinstance(name, str):
99
+ net = getattr(self, 'net' + name)
100
+ net.eval()
101
+
102
+ def test(self):
103
+ """Forward function used in test time.
104
+
105
+ This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop
106
+ It also calls <compute_visuals> to produce additional visualization results
107
+ """
108
+ with torch.no_grad():
109
+ self.forward()
110
+ self.compute_visuals()
111
+
112
+ def compute_visuals(self):
113
+ """Calculate additional output images for visdom and HTML visualization"""
114
+ pass
115
+
116
+ def get_image_paths(self):
117
+ """ Return image paths that are used to load current data"""
118
+ return self.image_paths
119
+
120
+ def update_learning_rate(self):
121
+ """Update learning rates for all the networks; called at the end of every epoch"""
122
+ old_lr = self.optimizers[0].param_groups[0]['lr']
123
+ for scheduler in self.schedulers:
124
+ if self.opt.lr_policy == 'plateau':
125
+ scheduler.step(self.metric)
126
+ else:
127
+ scheduler.step()
128
+
129
+ lr = self.optimizers[0].param_groups[0]['lr']
130
+ print('learning rate %.7f -> %.7f' % (old_lr, lr))
131
+
132
+ def get_current_visuals(self):
133
+ """Return visualization images. train.py will display these images with visdom, and save the images to a HTML"""
134
+ visual_ret = OrderedDict()
135
+ for name in self.visual_names:
136
+ if isinstance(name, str):
137
+ visual_ret[name] = getattr(self, name)
138
+ return visual_ret
139
+
140
+ def get_current_losses(self):
141
+ """Return traning losses / errors. train.py will print out these errors on console, and save them to a file"""
142
+ errors_ret = OrderedDict()
143
+ for name in self.loss_names:
144
+ if isinstance(name, str):
145
+ errors_ret[name] = float(getattr(self, 'loss_' + name)) # float(...) works for both scalar tensor and float number
146
+ return errors_ret
147
+
148
+ def save_networks(self, epoch):
149
+ """Save all the networks to the disk.
150
+
151
+ Parameters:
152
+ epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)
153
+ """
154
+ for name in self.model_names:
155
+ if isinstance(name, str):
156
+ save_filename = '%s_net_%s.pth' % (epoch, name)
157
+ save_path = os.path.join(self.save_dir, save_filename)
158
+ net = getattr(self, 'net' + name)
159
+
160
+ if len(self.gpu_ids) > 0 and torch.cuda.is_available():
161
+ torch.save(net.module.cpu().state_dict(), save_path)
162
+ net.cuda(self.gpu_ids[0])
163
+ else:
164
+ torch.save(net.cpu().state_dict(), save_path)
165
+
166
+ def unload_network(self, name):
167
+ """Unload network and gc.
168
+ """
169
+ if isinstance(name, str):
170
+ net = getattr(self, 'net' + name)
171
+ del net
172
+ gc.collect()
173
+ torch_gc()
174
+ return None
175
+
176
+ def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0):
177
+ """Fix InstanceNorm checkpoints incompatibility (prior to 0.4)"""
178
+ key = keys[i]
179
+ if i + 1 == len(keys): # at the end, pointing to a parameter/buffer
180
+ if module.__class__.__name__.startswith('InstanceNorm') and \
181
+ (key == 'running_mean' or key == 'running_var'):
182
+ if getattr(module, key) is None:
183
+ state_dict.pop('.'.join(keys))
184
+ if module.__class__.__name__.startswith('InstanceNorm') and \
185
+ (key == 'num_batches_tracked'):
186
+ state_dict.pop('.'.join(keys))
187
+ else:
188
+ self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1)
189
+
190
+ def load_networks(self, epoch):
191
+ """Load all the networks from the disk.
192
+
193
+ Parameters:
194
+ epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)
195
+ """
196
+ for name in self.model_names:
197
+ if isinstance(name, str):
198
+ load_filename = '%s_net_%s.pth' % (epoch, name)
199
+ load_path = os.path.join(self.save_dir, load_filename)
200
+ net = getattr(self, 'net' + name)
201
+ if isinstance(net, torch.nn.DataParallel):
202
+ net = net.module
203
+ # print('Loading depth boost model from %s' % load_path)
204
+ # if you are using PyTorch newer than 0.4 (e.g., built from
205
+ # GitHub source), you can remove str() on self.device
206
+ state_dict = torch.load(load_path, map_location=str(self.device))
207
+ if hasattr(state_dict, '_metadata'):
208
+ del state_dict._metadata
209
+
210
+ # patch InstanceNorm checkpoints prior to 0.4
211
+ for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop
212
+ self.__patch_instance_norm_state_dict(state_dict, net, key.split('.'))
213
+ net.load_state_dict(state_dict)
214
+
215
+ def print_networks(self, verbose):
216
+ """Print the total number of parameters in the network and (if verbose) network architecture
217
+
218
+ Parameters:
219
+ verbose (bool) -- if verbose: print the network architecture
220
+ """
221
+ print('---------- Networks initialized -------------')
222
+ for name in self.model_names:
223
+ if isinstance(name, str):
224
+ net = getattr(self, 'net' + name)
225
+ num_params = 0
226
+ for param in net.parameters():
227
+ num_params += param.numel()
228
+ if verbose:
229
+ print(net)
230
+ print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6))
231
+ print('-----------------------------------------------')
232
+
233
+ def set_requires_grad(self, nets, requires_grad=False):
234
+ """Set requies_grad=Fasle for all the networks to avoid unnecessary computations
235
+ Parameters:
236
+ nets (network list) -- a list of networks
237
+ requires_grad (bool) -- whether the networks require gradients or not
238
+ """
239
+ if not isinstance(nets, list):
240
+ nets = [nets]
241
+ for net in nets:
242
+ if net is not None:
243
+ for param in net.parameters():
244
+ param.requires_grad = requires_grad
controlnet_aux/leres/pix2pix/models/base_model_hg.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+
4
+ class BaseModelHG():
5
+ def name(self):
6
+ return 'BaseModel'
7
+
8
+ def initialize(self, opt):
9
+ self.opt = opt
10
+ self.gpu_ids = opt.gpu_ids
11
+ self.isTrain = opt.isTrain
12
+ self.Tensor = torch.cuda.FloatTensor if self.gpu_ids else torch.Tensor
13
+ self.save_dir = os.path.join(opt.checkpoints_dir, opt.name)
14
+
15
+ def set_input(self, input):
16
+ self.input = input
17
+
18
+ def forward(self):
19
+ pass
20
+
21
+ # used in test time, no backprop
22
+ def test(self):
23
+ pass
24
+
25
+ def get_image_paths(self):
26
+ pass
27
+
28
+ def optimize_parameters(self):
29
+ pass
30
+
31
+ def get_current_visuals(self):
32
+ return self.input
33
+
34
+ def get_current_errors(self):
35
+ return {}
36
+
37
+ def save(self, label):
38
+ pass
39
+
40
+ # helper saving function that can be used by subclasses
41
+ def save_network(self, network, network_label, epoch_label, gpu_ids):
42
+ save_filename = '_%s_net_%s.pth' % (epoch_label, network_label)
43
+ save_path = os.path.join(self.save_dir, save_filename)
44
+ torch.save(network.cpu().state_dict(), save_path)
45
+ if len(gpu_ids) and torch.cuda.is_available():
46
+ network.cuda(device_id=gpu_ids[0])
47
+
48
+ # helper loading function that can be used by subclasses
49
+ def load_network(self, network, network_label, epoch_label):
50
+ save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
51
+ save_path = os.path.join(self.save_dir, save_filename)
52
+ print(save_path)
53
+ model = torch.load(save_path)
54
+ return model
55
+ # network.load_state_dict(torch.load(save_path))
56
+
57
+ def update_learning_rate():
58
+ pass
controlnet_aux/leres/pix2pix/models/networks.py ADDED
@@ -0,0 +1,623 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.nn import init
4
+ import functools
5
+ from torch.optim import lr_scheduler
6
+
7
+
8
+ ###############################################################################
9
+ # Helper Functions
10
+ ###############################################################################
11
+
12
+
13
+ class Identity(nn.Module):
14
+ def forward(self, x):
15
+ return x
16
+
17
+
18
+ def get_norm_layer(norm_type='instance'):
19
+ """Return a normalization layer
20
+
21
+ Parameters:
22
+ norm_type (str) -- the name of the normalization layer: batch | instance | none
23
+
24
+ For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev).
25
+ For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
26
+ """
27
+ if norm_type == 'batch':
28
+ norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
29
+ elif norm_type == 'instance':
30
+ norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
31
+ elif norm_type == 'none':
32
+ def norm_layer(x): return Identity()
33
+ else:
34
+ raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
35
+ return norm_layer
36
+
37
+
38
+ def get_scheduler(optimizer, opt):
39
+ """Return a learning rate scheduler
40
+
41
+ Parameters:
42
+ optimizer -- the optimizer of the network
43
+ opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions. 
44
+ opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine
45
+
46
+ For 'linear', we keep the same learning rate for the first <opt.n_epochs> epochs
47
+ and linearly decay the rate to zero over the next <opt.n_epochs_decay> epochs.
48
+ For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers.
49
+ See https://pytorch.org/docs/stable/optim.html for more details.
50
+ """
51
+ if opt.lr_policy == 'linear':
52
+ def lambda_rule(epoch):
53
+ lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.n_epochs) / float(opt.n_epochs_decay + 1)
54
+ return lr_l
55
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
56
+ elif opt.lr_policy == 'step':
57
+ scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1)
58
+ elif opt.lr_policy == 'plateau':
59
+ scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
60
+ elif opt.lr_policy == 'cosine':
61
+ scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0)
62
+ else:
63
+ return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
64
+ return scheduler
65
+
66
+
67
+ def init_weights(net, init_type='normal', init_gain=0.02):
68
+ """Initialize network weights.
69
+
70
+ Parameters:
71
+ net (network) -- network to be initialized
72
+ init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
73
+ init_gain (float) -- scaling factor for normal, xavier and orthogonal.
74
+
75
+ We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
76
+ work better for some applications. Feel free to try yourself.
77
+ """
78
+ def init_func(m): # define the initialization function
79
+ classname = m.__class__.__name__
80
+ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
81
+ if init_type == 'normal':
82
+ init.normal_(m.weight.data, 0.0, init_gain)
83
+ elif init_type == 'xavier':
84
+ init.xavier_normal_(m.weight.data, gain=init_gain)
85
+ elif init_type == 'kaiming':
86
+ init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
87
+ elif init_type == 'orthogonal':
88
+ init.orthogonal_(m.weight.data, gain=init_gain)
89
+ else:
90
+ raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
91
+ if hasattr(m, 'bias') and m.bias is not None:
92
+ init.constant_(m.bias.data, 0.0)
93
+ elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
94
+ init.normal_(m.weight.data, 1.0, init_gain)
95
+ init.constant_(m.bias.data, 0.0)
96
+
97
+ # print('initialize network with %s' % init_type)
98
+ net.apply(init_func) # apply the initialization function <init_func>
99
+
100
+
101
+ def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]):
102
+ """Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights
103
+ Parameters:
104
+ net (network) -- the network to be initialized
105
+ init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
106
+ gain (float) -- scaling factor for normal, xavier and orthogonal.
107
+ gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
108
+
109
+ Return an initialized network.
110
+ """
111
+ if len(gpu_ids) > 0:
112
+ assert(torch.cuda.is_available())
113
+ net.to(gpu_ids[0])
114
+ net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs
115
+ init_weights(net, init_type, init_gain=init_gain)
116
+ return net
117
+
118
+
119
+ def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, gpu_ids=[]):
120
+ """Create a generator
121
+
122
+ Parameters:
123
+ input_nc (int) -- the number of channels in input images
124
+ output_nc (int) -- the number of channels in output images
125
+ ngf (int) -- the number of filters in the last conv layer
126
+ netG (str) -- the architecture's name: resnet_9blocks | resnet_6blocks | unet_256 | unet_128
127
+ norm (str) -- the name of normalization layers used in the network: batch | instance | none
128
+ use_dropout (bool) -- if use dropout layers.
129
+ init_type (str) -- the name of our initialization method.
130
+ init_gain (float) -- scaling factor for normal, xavier and orthogonal.
131
+ gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
132
+
133
+ Returns a generator
134
+
135
+ Our current implementation provides two types of generators:
136
+ U-Net: [unet_128] (for 128x128 input images) and [unet_256] (for 256x256 input images)
137
+ The original U-Net paper: https://arxiv.org/abs/1505.04597
138
+
139
+ Resnet-based generator: [resnet_6blocks] (with 6 Resnet blocks) and [resnet_9blocks] (with 9 Resnet blocks)
140
+ Resnet-based generator consists of several Resnet blocks between a few downsampling/upsampling operations.
141
+ We adapt Torch code from Justin Johnson's neural style transfer project (https://github.com/jcjohnson/fast-neural-style).
142
+
143
+
144
+ The generator has been initialized by <init_net>. It uses RELU for non-linearity.
145
+ """
146
+ net = None
147
+ norm_layer = get_norm_layer(norm_type=norm)
148
+
149
+ if netG == 'resnet_9blocks':
150
+ net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9)
151
+ elif netG == 'resnet_6blocks':
152
+ net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6)
153
+ elif netG == 'resnet_12blocks':
154
+ net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=12)
155
+ elif netG == 'unet_128':
156
+ net = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
157
+ elif netG == 'unet_256':
158
+ net = UnetGenerator(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
159
+ elif netG == 'unet_672':
160
+ net = UnetGenerator(input_nc, output_nc, 5, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
161
+ elif netG == 'unet_960':
162
+ net = UnetGenerator(input_nc, output_nc, 6, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
163
+ elif netG == 'unet_1024':
164
+ net = UnetGenerator(input_nc, output_nc, 10, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
165
+ else:
166
+ raise NotImplementedError('Generator model name [%s] is not recognized' % netG)
167
+ return init_net(net, init_type, init_gain, gpu_ids)
168
+
169
+
170
+ def define_D(input_nc, ndf, netD, n_layers_D=3, norm='batch', init_type='normal', init_gain=0.02, gpu_ids=[]):
171
+ """Create a discriminator
172
+
173
+ Parameters:
174
+ input_nc (int) -- the number of channels in input images
175
+ ndf (int) -- the number of filters in the first conv layer
176
+ netD (str) -- the architecture's name: basic | n_layers | pixel
177
+ n_layers_D (int) -- the number of conv layers in the discriminator; effective when netD=='n_layers'
178
+ norm (str) -- the type of normalization layers used in the network.
179
+ init_type (str) -- the name of the initialization method.
180
+ init_gain (float) -- scaling factor for normal, xavier and orthogonal.
181
+ gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
182
+
183
+ Returns a discriminator
184
+
185
+ Our current implementation provides three types of discriminators:
186
+ [basic]: 'PatchGAN' classifier described in the original pix2pix paper.
187
+ It can classify whether 70×70 overlapping patches are real or fake.
188
+ Such a patch-level discriminator architecture has fewer parameters
189
+ than a full-image discriminator and can work on arbitrarily-sized images
190
+ in a fully convolutional fashion.
191
+
192
+ [n_layers]: With this mode, you can specify the number of conv layers in the discriminator
193
+ with the parameter <n_layers_D> (default=3 as used in [basic] (PatchGAN).)
194
+
195
+ [pixel]: 1x1 PixelGAN discriminator can classify whether a pixel is real or not.
196
+ It encourages greater color diversity but has no effect on spatial statistics.
197
+
198
+ The discriminator has been initialized by <init_net>. It uses Leakly RELU for non-linearity.
199
+ """
200
+ net = None
201
+ norm_layer = get_norm_layer(norm_type=norm)
202
+
203
+ if netD == 'basic': # default PatchGAN classifier
204
+ net = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer)
205
+ elif netD == 'n_layers': # more options
206
+ net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer)
207
+ elif netD == 'pixel': # classify if each pixel is real or fake
208
+ net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer)
209
+ else:
210
+ raise NotImplementedError('Discriminator model name [%s] is not recognized' % netD)
211
+ return init_net(net, init_type, init_gain, gpu_ids)
212
+
213
+
214
+ ##############################################################################
215
+ # Classes
216
+ ##############################################################################
217
+ class GANLoss(nn.Module):
218
+ """Define different GAN objectives.
219
+
220
+ The GANLoss class abstracts away the need to create the target label tensor
221
+ that has the same size as the input.
222
+ """
223
+
224
+ def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0):
225
+ """ Initialize the GANLoss class.
226
+
227
+ Parameters:
228
+ gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp.
229
+ target_real_label (bool) - - label for a real image
230
+ target_fake_label (bool) - - label of a fake image
231
+
232
+ Note: Do not use sigmoid as the last layer of Discriminator.
233
+ LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss.
234
+ """
235
+ super(GANLoss, self).__init__()
236
+ self.register_buffer('real_label', torch.tensor(target_real_label))
237
+ self.register_buffer('fake_label', torch.tensor(target_fake_label))
238
+ self.gan_mode = gan_mode
239
+ if gan_mode == 'lsgan':
240
+ self.loss = nn.MSELoss()
241
+ elif gan_mode == 'vanilla':
242
+ self.loss = nn.BCEWithLogitsLoss()
243
+ elif gan_mode in ['wgangp']:
244
+ self.loss = None
245
+ else:
246
+ raise NotImplementedError('gan mode %s not implemented' % gan_mode)
247
+
248
+ def get_target_tensor(self, prediction, target_is_real):
249
+ """Create label tensors with the same size as the input.
250
+
251
+ Parameters:
252
+ prediction (tensor) - - tpyically the prediction from a discriminator
253
+ target_is_real (bool) - - if the ground truth label is for real images or fake images
254
+
255
+ Returns:
256
+ A label tensor filled with ground truth label, and with the size of the input
257
+ """
258
+
259
+ if target_is_real:
260
+ target_tensor = self.real_label
261
+ else:
262
+ target_tensor = self.fake_label
263
+ return target_tensor.expand_as(prediction)
264
+
265
+ def __call__(self, prediction, target_is_real):
266
+ """Calculate loss given Discriminator's output and grount truth labels.
267
+
268
+ Parameters:
269
+ prediction (tensor) - - tpyically the prediction output from a discriminator
270
+ target_is_real (bool) - - if the ground truth label is for real images or fake images
271
+
272
+ Returns:
273
+ the calculated loss.
274
+ """
275
+ if self.gan_mode in ['lsgan', 'vanilla']:
276
+ target_tensor = self.get_target_tensor(prediction, target_is_real)
277
+ loss = self.loss(prediction, target_tensor)
278
+ elif self.gan_mode == 'wgangp':
279
+ if target_is_real:
280
+ loss = -prediction.mean()
281
+ else:
282
+ loss = prediction.mean()
283
+ return loss
284
+
285
+
286
+ def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0):
287
+ """Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028
288
+
289
+ Arguments:
290
+ netD (network) -- discriminator network
291
+ real_data (tensor array) -- real images
292
+ fake_data (tensor array) -- generated images from the generator
293
+ device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu')
294
+ type (str) -- if we mix real and fake data or not [real | fake | mixed].
295
+ constant (float) -- the constant used in formula ( ||gradient||_2 - constant)^2
296
+ lambda_gp (float) -- weight for this loss
297
+
298
+ Returns the gradient penalty loss
299
+ """
300
+ if lambda_gp > 0.0:
301
+ if type == 'real': # either use real images, fake images, or a linear interpolation of two.
302
+ interpolatesv = real_data
303
+ elif type == 'fake':
304
+ interpolatesv = fake_data
305
+ elif type == 'mixed':
306
+ alpha = torch.rand(real_data.shape[0], 1, device=device)
307
+ alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape)
308
+ interpolatesv = alpha * real_data + ((1 - alpha) * fake_data)
309
+ else:
310
+ raise NotImplementedError('{} not implemented'.format(type))
311
+ interpolatesv.requires_grad_(True)
312
+ disc_interpolates = netD(interpolatesv)
313
+ gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv,
314
+ grad_outputs=torch.ones(disc_interpolates.size()).to(device),
315
+ create_graph=True, retain_graph=True, only_inputs=True)
316
+ gradients = gradients[0].view(real_data.size(0), -1) # flat the data
317
+ gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps
318
+ return gradient_penalty, gradients
319
+ else:
320
+ return 0.0, None
321
+
322
+
323
+ class ResnetGenerator(nn.Module):
324
+ """Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations.
325
+
326
+ We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style)
327
+ """
328
+
329
+ def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'):
330
+ """Construct a Resnet-based generator
331
+
332
+ Parameters:
333
+ input_nc (int) -- the number of channels in input images
334
+ output_nc (int) -- the number of channels in output images
335
+ ngf (int) -- the number of filters in the last conv layer
336
+ norm_layer -- normalization layer
337
+ use_dropout (bool) -- if use dropout layers
338
+ n_blocks (int) -- the number of ResNet blocks
339
+ padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero
340
+ """
341
+ assert(n_blocks >= 0)
342
+ super(ResnetGenerator, self).__init__()
343
+ if type(norm_layer) == functools.partial:
344
+ use_bias = norm_layer.func == nn.InstanceNorm2d
345
+ else:
346
+ use_bias = norm_layer == nn.InstanceNorm2d
347
+
348
+ model = [nn.ReflectionPad2d(3),
349
+ nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias),
350
+ norm_layer(ngf),
351
+ nn.ReLU(True)]
352
+
353
+ n_downsampling = 2
354
+ for i in range(n_downsampling): # add downsampling layers
355
+ mult = 2 ** i
356
+ model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias),
357
+ norm_layer(ngf * mult * 2),
358
+ nn.ReLU(True)]
359
+
360
+ mult = 2 ** n_downsampling
361
+ for i in range(n_blocks): # add ResNet blocks
362
+
363
+ model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)]
364
+
365
+ for i in range(n_downsampling): # add upsampling layers
366
+ mult = 2 ** (n_downsampling - i)
367
+ model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2),
368
+ kernel_size=3, stride=2,
369
+ padding=1, output_padding=1,
370
+ bias=use_bias),
371
+ norm_layer(int(ngf * mult / 2)),
372
+ nn.ReLU(True)]
373
+ model += [nn.ReflectionPad2d(3)]
374
+ model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
375
+ model += [nn.Tanh()]
376
+
377
+ self.model = nn.Sequential(*model)
378
+
379
+ def forward(self, input):
380
+ """Standard forward"""
381
+ return self.model(input)
382
+
383
+
384
+ class ResnetBlock(nn.Module):
385
+ """Define a Resnet block"""
386
+
387
+ def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias):
388
+ """Initialize the Resnet block
389
+
390
+ A resnet block is a conv block with skip connections
391
+ We construct a conv block with build_conv_block function,
392
+ and implement skip connections in <forward> function.
393
+ Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf
394
+ """
395
+ super(ResnetBlock, self).__init__()
396
+ self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias)
397
+
398
+ def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias):
399
+ """Construct a convolutional block.
400
+
401
+ Parameters:
402
+ dim (int) -- the number of channels in the conv layer.
403
+ padding_type (str) -- the name of padding layer: reflect | replicate | zero
404
+ norm_layer -- normalization layer
405
+ use_dropout (bool) -- if use dropout layers.
406
+ use_bias (bool) -- if the conv layer uses bias or not
407
+
408
+ Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU))
409
+ """
410
+ conv_block = []
411
+ p = 0
412
+ if padding_type == 'reflect':
413
+ conv_block += [nn.ReflectionPad2d(1)]
414
+ elif padding_type == 'replicate':
415
+ conv_block += [nn.ReplicationPad2d(1)]
416
+ elif padding_type == 'zero':
417
+ p = 1
418
+ else:
419
+ raise NotImplementedError('padding [%s] is not implemented' % padding_type)
420
+
421
+ conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)]
422
+ if use_dropout:
423
+ conv_block += [nn.Dropout(0.5)]
424
+
425
+ p = 0
426
+ if padding_type == 'reflect':
427
+ conv_block += [nn.ReflectionPad2d(1)]
428
+ elif padding_type == 'replicate':
429
+ conv_block += [nn.ReplicationPad2d(1)]
430
+ elif padding_type == 'zero':
431
+ p = 1
432
+ else:
433
+ raise NotImplementedError('padding [%s] is not implemented' % padding_type)
434
+ conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)]
435
+
436
+ return nn.Sequential(*conv_block)
437
+
438
+ def forward(self, x):
439
+ """Forward function (with skip connections)"""
440
+ out = x + self.conv_block(x) # add skip connections
441
+ return out
442
+
443
+
444
+ class UnetGenerator(nn.Module):
445
+ """Create a Unet-based generator"""
446
+
447
+ def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False):
448
+ """Construct a Unet generator
449
+ Parameters:
450
+ input_nc (int) -- the number of channels in input images
451
+ output_nc (int) -- the number of channels in output images
452
+ num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
453
+ image of size 128x128 will become of size 1x1 # at the bottleneck
454
+ ngf (int) -- the number of filters in the last conv layer
455
+ norm_layer -- normalization layer
456
+
457
+ We construct the U-Net from the innermost layer to the outermost layer.
458
+ It is a recursive process.
459
+ """
460
+ super(UnetGenerator, self).__init__()
461
+ # construct unet structure
462
+ unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer
463
+ for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters
464
+ unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout)
465
+ # gradually reduce the number of filters from ngf * 8 to ngf
466
+ unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
467
+ unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
468
+ unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
469
+ self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer
470
+
471
+ def forward(self, input):
472
+ """Standard forward"""
473
+ return self.model(input)
474
+
475
+
476
+ class UnetSkipConnectionBlock(nn.Module):
477
+ """Defines the Unet submodule with skip connection.
478
+ X -------------------identity----------------------
479
+ |-- downsampling -- |submodule| -- upsampling --|
480
+ """
481
+
482
+ def __init__(self, outer_nc, inner_nc, input_nc=None,
483
+ submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
484
+ """Construct a Unet submodule with skip connections.
485
+
486
+ Parameters:
487
+ outer_nc (int) -- the number of filters in the outer conv layer
488
+ inner_nc (int) -- the number of filters in the inner conv layer
489
+ input_nc (int) -- the number of channels in input images/features
490
+ submodule (UnetSkipConnectionBlock) -- previously defined submodules
491
+ outermost (bool) -- if this module is the outermost module
492
+ innermost (bool) -- if this module is the innermost module
493
+ norm_layer -- normalization layer
494
+ use_dropout (bool) -- if use dropout layers.
495
+ """
496
+ super(UnetSkipConnectionBlock, self).__init__()
497
+ self.outermost = outermost
498
+ if type(norm_layer) == functools.partial:
499
+ use_bias = norm_layer.func == nn.InstanceNorm2d
500
+ else:
501
+ use_bias = norm_layer == nn.InstanceNorm2d
502
+ if input_nc is None:
503
+ input_nc = outer_nc
504
+ downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
505
+ stride=2, padding=1, bias=use_bias)
506
+ downrelu = nn.LeakyReLU(0.2, True)
507
+ downnorm = norm_layer(inner_nc)
508
+ uprelu = nn.ReLU(True)
509
+ upnorm = norm_layer(outer_nc)
510
+
511
+ if outermost:
512
+ upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
513
+ kernel_size=4, stride=2,
514
+ padding=1)
515
+ down = [downconv]
516
+ up = [uprelu, upconv, nn.Tanh()]
517
+ model = down + [submodule] + up
518
+ elif innermost:
519
+ upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
520
+ kernel_size=4, stride=2,
521
+ padding=1, bias=use_bias)
522
+ down = [downrelu, downconv]
523
+ up = [uprelu, upconv, upnorm]
524
+ model = down + up
525
+ else:
526
+ upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
527
+ kernel_size=4, stride=2,
528
+ padding=1, bias=use_bias)
529
+ down = [downrelu, downconv, downnorm]
530
+ up = [uprelu, upconv, upnorm]
531
+
532
+ if use_dropout:
533
+ model = down + [submodule] + up + [nn.Dropout(0.5)]
534
+ else:
535
+ model = down + [submodule] + up
536
+
537
+ self.model = nn.Sequential(*model)
538
+
539
+ def forward(self, x):
540
+ if self.outermost:
541
+ return self.model(x)
542
+ else: # add skip connections
543
+ return torch.cat([x, self.model(x)], 1)
544
+
545
+
546
+ class NLayerDiscriminator(nn.Module):
547
+ """Defines a PatchGAN discriminator"""
548
+
549
+ def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d):
550
+ """Construct a PatchGAN discriminator
551
+
552
+ Parameters:
553
+ input_nc (int) -- the number of channels in input images
554
+ ndf (int) -- the number of filters in the last conv layer
555
+ n_layers (int) -- the number of conv layers in the discriminator
556
+ norm_layer -- normalization layer
557
+ """
558
+ super(NLayerDiscriminator, self).__init__()
559
+ if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
560
+ use_bias = norm_layer.func == nn.InstanceNorm2d
561
+ else:
562
+ use_bias = norm_layer == nn.InstanceNorm2d
563
+
564
+ kw = 4
565
+ padw = 1
566
+ sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
567
+ nf_mult = 1
568
+ nf_mult_prev = 1
569
+ for n in range(1, n_layers): # gradually increase the number of filters
570
+ nf_mult_prev = nf_mult
571
+ nf_mult = min(2 ** n, 8)
572
+ sequence += [
573
+ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
574
+ norm_layer(ndf * nf_mult),
575
+ nn.LeakyReLU(0.2, True)
576
+ ]
577
+
578
+ nf_mult_prev = nf_mult
579
+ nf_mult = min(2 ** n_layers, 8)
580
+ sequence += [
581
+ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
582
+ norm_layer(ndf * nf_mult),
583
+ nn.LeakyReLU(0.2, True)
584
+ ]
585
+
586
+ sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map
587
+ self.model = nn.Sequential(*sequence)
588
+
589
+ def forward(self, input):
590
+ """Standard forward."""
591
+ return self.model(input)
592
+
593
+
594
+ class PixelDiscriminator(nn.Module):
595
+ """Defines a 1x1 PatchGAN discriminator (pixelGAN)"""
596
+
597
+ def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d):
598
+ """Construct a 1x1 PatchGAN discriminator
599
+
600
+ Parameters:
601
+ input_nc (int) -- the number of channels in input images
602
+ ndf (int) -- the number of filters in the last conv layer
603
+ norm_layer -- normalization layer
604
+ """
605
+ super(PixelDiscriminator, self).__init__()
606
+ if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
607
+ use_bias = norm_layer.func == nn.InstanceNorm2d
608
+ else:
609
+ use_bias = norm_layer == nn.InstanceNorm2d
610
+
611
+ self.net = [
612
+ nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0),
613
+ nn.LeakyReLU(0.2, True),
614
+ nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias),
615
+ norm_layer(ndf * 2),
616
+ nn.LeakyReLU(0.2, True),
617
+ nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)]
618
+
619
+ self.net = nn.Sequential(*self.net)
620
+
621
+ def forward(self, input):
622
+ """Standard forward."""
623
+ return self.net(input)
controlnet_aux/leres/pix2pix/models/pix2pix4depth_model.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from .base_model import BaseModel
3
+ from . import networks
4
+
5
+
6
+ class Pix2Pix4DepthModel(BaseModel):
7
+ """ This class implements the pix2pix model, for learning a mapping from input images to output images given paired data.
8
+
9
+ The model training requires '--dataset_mode aligned' dataset.
10
+ By default, it uses a '--netG unet256' U-Net generator,
11
+ a '--netD basic' discriminator (PatchGAN),
12
+ and a '--gan_mode' vanilla GAN loss (the cross-entropy objective used in the orignal GAN paper).
13
+
14
+ pix2pix paper: https://arxiv.org/pdf/1611.07004.pdf
15
+ """
16
+ @staticmethod
17
+ def modify_commandline_options(parser, is_train=True):
18
+ """Add new dataset-specific options, and rewrite default values for existing options.
19
+
20
+ Parameters:
21
+ parser -- original option parser
22
+ is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
23
+
24
+ Returns:
25
+ the modified parser.
26
+
27
+ For pix2pix, we do not use image buffer
28
+ The training objective is: GAN Loss + lambda_L1 * ||G(A)-B||_1
29
+ By default, we use vanilla GAN loss, UNet with batchnorm, and aligned datasets.
30
+ """
31
+ # changing the default values to match the pix2pix paper (https://phillipi.github.io/pix2pix/)
32
+ parser.set_defaults(input_nc=2,output_nc=1,norm='none', netG='unet_1024', dataset_mode='depthmerge')
33
+ if is_train:
34
+ parser.set_defaults(pool_size=0, gan_mode='vanilla',)
35
+ parser.add_argument('--lambda_L1', type=float, default=1000, help='weight for L1 loss')
36
+ return parser
37
+
38
+ def __init__(self, opt):
39
+ """Initialize the pix2pix class.
40
+
41
+ Parameters:
42
+ opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
43
+ """
44
+ BaseModel.__init__(self, opt)
45
+ # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
46
+
47
+ self.loss_names = ['G_GAN', 'G_L1', 'D_real', 'D_fake']
48
+ # self.loss_names = ['G_L1']
49
+
50
+ # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
51
+ if self.isTrain:
52
+ self.visual_names = ['outer','inner', 'fake_B', 'real_B']
53
+ else:
54
+ self.visual_names = ['fake_B']
55
+
56
+ # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>
57
+ if self.isTrain:
58
+ self.model_names = ['G','D']
59
+ else: # during test time, only load G
60
+ self.model_names = ['G']
61
+
62
+ # define networks (both generator and discriminator)
63
+ self.netG = networks.define_G(opt.input_nc, opt.output_nc, 64, 'unet_1024', 'none',
64
+ False, 'normal', 0.02, self.gpu_ids)
65
+
66
+ if self.isTrain: # define a discriminator; conditional GANs need to take both input and output images; Therefore, #channels for D is input_nc + output_nc
67
+ self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD,
68
+ opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)
69
+
70
+ if self.isTrain:
71
+ # define loss functions
72
+ self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)
73
+ self.criterionL1 = torch.nn.L1Loss()
74
+ # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.
75
+ self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=1e-4, betas=(opt.beta1, 0.999))
76
+ self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=2e-06, betas=(opt.beta1, 0.999))
77
+ self.optimizers.append(self.optimizer_G)
78
+ self.optimizers.append(self.optimizer_D)
79
+
80
+ def set_input_train(self, input):
81
+ self.outer = input['data_outer'].to(self.device)
82
+ self.outer = torch.nn.functional.interpolate(self.outer,(1024,1024),mode='bilinear',align_corners=False)
83
+
84
+ self.inner = input['data_inner'].to(self.device)
85
+ self.inner = torch.nn.functional.interpolate(self.inner,(1024,1024),mode='bilinear',align_corners=False)
86
+
87
+ self.image_paths = input['image_path']
88
+
89
+ if self.isTrain:
90
+ self.gtfake = input['data_gtfake'].to(self.device)
91
+ self.gtfake = torch.nn.functional.interpolate(self.gtfake, (1024, 1024), mode='bilinear', align_corners=False)
92
+ self.real_B = self.gtfake
93
+
94
+ self.real_A = torch.cat((self.outer, self.inner), 1)
95
+
96
+ def set_input(self, outer, inner):
97
+ inner = torch.from_numpy(inner).unsqueeze(0).unsqueeze(0)
98
+ outer = torch.from_numpy(outer).unsqueeze(0).unsqueeze(0)
99
+
100
+ inner = (inner - torch.min(inner))/(torch.max(inner)-torch.min(inner))
101
+ outer = (outer - torch.min(outer))/(torch.max(outer)-torch.min(outer))
102
+
103
+ inner = self.normalize(inner)
104
+ outer = self.normalize(outer)
105
+
106
+ self.real_A = torch.cat((outer, inner), 1).to(self.device)
107
+
108
+
109
+ def normalize(self, input):
110
+ input = input * 2
111
+ input = input - 1
112
+ return input
113
+
114
+ def forward(self):
115
+ """Run forward pass; called by both functions <optimize_parameters> and <test>."""
116
+ self.fake_B = self.netG(self.real_A) # G(A)
117
+
118
+ def backward_D(self):
119
+ """Calculate GAN loss for the discriminator"""
120
+ # Fake; stop backprop to the generator by detaching fake_B
121
+ fake_AB = torch.cat((self.real_A, self.fake_B), 1) # we use conditional GANs; we need to feed both input and output to the discriminator
122
+ pred_fake = self.netD(fake_AB.detach())
123
+ self.loss_D_fake = self.criterionGAN(pred_fake, False)
124
+ # Real
125
+ real_AB = torch.cat((self.real_A, self.real_B), 1)
126
+ pred_real = self.netD(real_AB)
127
+ self.loss_D_real = self.criterionGAN(pred_real, True)
128
+ # combine loss and calculate gradients
129
+ self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5
130
+ self.loss_D.backward()
131
+
132
+ def backward_G(self):
133
+ """Calculate GAN and L1 loss for the generator"""
134
+ # First, G(A) should fake the discriminator
135
+ fake_AB = torch.cat((self.real_A, self.fake_B), 1)
136
+ pred_fake = self.netD(fake_AB)
137
+ self.loss_G_GAN = self.criterionGAN(pred_fake, True)
138
+ # Second, G(A) = B
139
+ self.loss_G_L1 = self.criterionL1(self.fake_B, self.real_B) * self.opt.lambda_L1
140
+ # combine loss and calculate gradients
141
+ self.loss_G = self.loss_G_L1 + self.loss_G_GAN
142
+ self.loss_G.backward()
143
+
144
+ def optimize_parameters(self):
145
+ self.forward() # compute fake images: G(A)
146
+ # update D
147
+ self.set_requires_grad(self.netD, True) # enable backprop for D
148
+ self.optimizer_D.zero_grad() # set D's gradients to zero
149
+ self.backward_D() # calculate gradients for D
150
+ self.optimizer_D.step() # update D's weights
151
+ # update G
152
+ self.set_requires_grad(self.netD, False) # D requires no gradients when optimizing G
153
+ self.optimizer_G.zero_grad() # set G's gradients to zero
154
+ self.backward_G() # calculate graidents for G
155
+ self.optimizer_G.step() # udpate G's weights
controlnet_aux/leres/pix2pix/options/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ """This package options includes option modules: training options, test options, and basic options (used in both training and test)."""
controlnet_aux/leres/pix2pix/options/base_options.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ from ...pix2pix.util import util
4
+ # import torch
5
+ from ...pix2pix import models
6
+ # import pix2pix.data
7
+ import numpy as np
8
+
9
+ class BaseOptions():
10
+ """This class defines options used during both training and test time.
11
+
12
+ It also implements several helper functions such as parsing, printing, and saving the options.
13
+ It also gathers additional options defined in <modify_commandline_options> functions in both dataset class and model class.
14
+ """
15
+
16
+ def __init__(self):
17
+ """Reset the class; indicates the class hasn't been initailized"""
18
+ self.initialized = False
19
+
20
+ def initialize(self, parser):
21
+ """Define the common options that are used in both training and test."""
22
+ # basic parameters
23
+ parser.add_argument('--dataroot', help='path to images (should have subfolders trainA, trainB, valA, valB, etc)')
24
+ parser.add_argument('--name', type=str, default='void', help='mahdi_unet_new, scaled_unet')
25
+ parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
26
+ parser.add_argument('--checkpoints_dir', type=str, default='./pix2pix/checkpoints', help='models are saved here')
27
+ # model parameters
28
+ parser.add_argument('--model', type=str, default='cycle_gan', help='chooses which model to use. [cycle_gan | pix2pix | test | colorization]')
29
+ parser.add_argument('--input_nc', type=int, default=2, help='# of input image channels: 3 for RGB and 1 for grayscale')
30
+ parser.add_argument('--output_nc', type=int, default=1, help='# of output image channels: 3 for RGB and 1 for grayscale')
31
+ parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in the last conv layer')
32
+ parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in the first conv layer')
33
+ parser.add_argument('--netD', type=str, default='basic', help='specify discriminator architecture [basic | n_layers | pixel]. The basic model is a 70x70 PatchGAN. n_layers allows you to specify the layers in the discriminator')
34
+ parser.add_argument('--netG', type=str, default='resnet_9blocks', help='specify generator architecture [resnet_9blocks | resnet_6blocks | unet_256 | unet_128]')
35
+ parser.add_argument('--n_layers_D', type=int, default=3, help='only used if netD==n_layers')
36
+ parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization [instance | batch | none]')
37
+ parser.add_argument('--init_type', type=str, default='normal', help='network initialization [normal | xavier | kaiming | orthogonal]')
38
+ parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.')
39
+ parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator')
40
+ # dataset parameters
41
+ parser.add_argument('--dataset_mode', type=str, default='unaligned', help='chooses how datasets are loaded. [unaligned | aligned | single | colorization]')
42
+ parser.add_argument('--direction', type=str, default='AtoB', help='AtoB or BtoA')
43
+ parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly')
44
+ parser.add_argument('--num_threads', default=4, type=int, help='# threads for loading data')
45
+ parser.add_argument('--batch_size', type=int, default=1, help='input batch size')
46
+ parser.add_argument('--load_size', type=int, default=672, help='scale images to this size')
47
+ parser.add_argument('--crop_size', type=int, default=672, help='then crop to this size')
48
+ parser.add_argument('--max_dataset_size', type=int, default=10000, help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.')
49
+ parser.add_argument('--preprocess', type=str, default='resize_and_crop', help='scaling and cropping of images at load time [resize_and_crop | crop | scale_width | scale_width_and_crop | none]')
50
+ parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data augmentation')
51
+ parser.add_argument('--display_winsize', type=int, default=256, help='display window size for both visdom and HTML')
52
+ # additional parameters
53
+ parser.add_argument('--epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model')
54
+ parser.add_argument('--load_iter', type=int, default='0', help='which iteration to load? if load_iter > 0, the code will load models by iter_[load_iter]; otherwise, the code will load models by [epoch]')
55
+ parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information')
56
+ parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{load_size}')
57
+
58
+ parser.add_argument('--data_dir', type=str, required=False,
59
+ help='input files directory images can be .png .jpg .tiff')
60
+ parser.add_argument('--output_dir', type=str, required=False,
61
+ help='result dir. result depth will be png. vides are JMPG as avi')
62
+ parser.add_argument('--savecrops', type=int, required=False)
63
+ parser.add_argument('--savewholeest', type=int, required=False)
64
+ parser.add_argument('--output_resolution', type=int, required=False,
65
+ help='0 for no restriction 1 for resize to input size')
66
+ parser.add_argument('--net_receptive_field_size', type=int, required=False)
67
+ parser.add_argument('--pix2pixsize', type=int, required=False)
68
+ parser.add_argument('--generatevideo', type=int, required=False)
69
+ parser.add_argument('--depthNet', type=int, required=False, help='0: midas 1:strurturedRL')
70
+ parser.add_argument('--R0', action='store_true')
71
+ parser.add_argument('--R20', action='store_true')
72
+ parser.add_argument('--Final', action='store_true')
73
+ parser.add_argument('--colorize_results', action='store_true')
74
+ parser.add_argument('--max_res', type=float, default=np.inf)
75
+
76
+ self.initialized = True
77
+ return parser
78
+
79
+ def gather_options(self):
80
+ """Initialize our parser with basic options(only once).
81
+ Add additional model-specific and dataset-specific options.
82
+ These options are defined in the <modify_commandline_options> function
83
+ in model and dataset classes.
84
+ """
85
+ if not self.initialized: # check if it has been initialized
86
+ parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
87
+ parser = self.initialize(parser)
88
+
89
+ # get the basic options
90
+ opt, _ = parser.parse_known_args()
91
+
92
+ # modify model-related parser options
93
+ model_name = opt.model
94
+ model_option_setter = models.get_option_setter(model_name)
95
+ parser = model_option_setter(parser, self.isTrain)
96
+ opt, _ = parser.parse_known_args() # parse again with new defaults
97
+
98
+ # modify dataset-related parser options
99
+ # dataset_name = opt.dataset_mode
100
+ # dataset_option_setter = pix2pix.data.get_option_setter(dataset_name)
101
+ # parser = dataset_option_setter(parser, self.isTrain)
102
+
103
+ # save and return the parser
104
+ self.parser = parser
105
+ #return parser.parse_args() #EVIL
106
+ return opt
107
+
108
+ def print_options(self, opt):
109
+ """Print and save options
110
+
111
+ It will print both current options and default values(if different).
112
+ It will save options into a text file / [checkpoints_dir] / opt.txt
113
+ """
114
+ message = ''
115
+ message += '----------------- Options ---------------\n'
116
+ for k, v in sorted(vars(opt).items()):
117
+ comment = ''
118
+ default = self.parser.get_default(k)
119
+ if v != default:
120
+ comment = '\t[default: %s]' % str(default)
121
+ message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
122
+ message += '----------------- End -------------------'
123
+ print(message)
124
+
125
+ # save to the disk
126
+ expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
127
+ util.mkdirs(expr_dir)
128
+ file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase))
129
+ with open(file_name, 'wt') as opt_file:
130
+ opt_file.write(message)
131
+ opt_file.write('\n')
132
+
133
+ def parse(self):
134
+ """Parse our options, create checkpoints directory suffix, and set up gpu device."""
135
+ opt = self.gather_options()
136
+ opt.isTrain = self.isTrain # train or test
137
+
138
+ # process opt.suffix
139
+ if opt.suffix:
140
+ suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
141
+ opt.name = opt.name + suffix
142
+
143
+ #self.print_options(opt)
144
+
145
+ # set gpu ids
146
+ str_ids = opt.gpu_ids.split(',')
147
+ opt.gpu_ids = []
148
+ for str_id in str_ids:
149
+ id = int(str_id)
150
+ if id >= 0:
151
+ opt.gpu_ids.append(id)
152
+ #if len(opt.gpu_ids) > 0:
153
+ # torch.cuda.set_device(opt.gpu_ids[0])
154
+
155
+ self.opt = opt
156
+ return self.opt
controlnet_aux/leres/pix2pix/options/test_options.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .base_options import BaseOptions
2
+
3
+
4
+ class TestOptions(BaseOptions):
5
+ """This class includes test options.
6
+
7
+ It also includes shared options defined in BaseOptions.
8
+ """
9
+
10
+ def initialize(self, parser):
11
+ parser = BaseOptions.initialize(self, parser) # define shared options
12
+ parser.add_argument('--aspect_ratio', type=float, default=1.0, help='aspect ratio of result images')
13
+ parser.add_argument('--phase', type=str, default='test', help='train, val, test, etc')
14
+ # Dropout and Batchnorm has different behavioir during training and test.
15
+ parser.add_argument('--eval', action='store_true', help='use eval mode during test time.')
16
+ parser.add_argument('--num_test', type=int, default=50, help='how many test images to run')
17
+ # rewrite devalue values
18
+ parser.set_defaults(model='pix2pix4depth')
19
+ # To avoid cropping, the load_size should be the same as crop_size
20
+ parser.set_defaults(load_size=parser.get_default('crop_size'))
21
+ self.isTrain = False
22
+ return parser
controlnet_aux/leres/pix2pix/util/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ """This package includes a miscellaneous collection of useful helper functions."""
controlnet_aux/leres/pix2pix/util/util.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This module contains simple helper functions """
2
+ from __future__ import print_function
3
+ import torch
4
+ import numpy as np
5
+ from PIL import Image
6
+ import os
7
+
8
+
9
+ def tensor2im(input_image, imtype=np.uint16):
10
+ """"Converts a Tensor array into a numpy image array.
11
+
12
+ Parameters:
13
+ input_image (tensor) -- the input image tensor array
14
+ imtype (type) -- the desired type of the converted numpy array
15
+ """
16
+ if not isinstance(input_image, np.ndarray):
17
+ if isinstance(input_image, torch.Tensor): # get the data from a variable
18
+ image_tensor = input_image.data
19
+ else:
20
+ return input_image
21
+ image_numpy = torch.squeeze(image_tensor).cpu().numpy() # convert it into a numpy array
22
+ image_numpy = (image_numpy + 1) / 2.0 * (2**16-1) #
23
+ else: # if it is a numpy array, do nothing
24
+ image_numpy = input_image
25
+ return image_numpy.astype(imtype)
26
+
27
+
28
+ def diagnose_network(net, name='network'):
29
+ """Calculate and print the mean of average absolute(gradients)
30
+
31
+ Parameters:
32
+ net (torch network) -- Torch network
33
+ name (str) -- the name of the network
34
+ """
35
+ mean = 0.0
36
+ count = 0
37
+ for param in net.parameters():
38
+ if param.grad is not None:
39
+ mean += torch.mean(torch.abs(param.grad.data))
40
+ count += 1
41
+ if count > 0:
42
+ mean = mean / count
43
+ print(name)
44
+ print(mean)
45
+
46
+
47
+ def save_image(image_numpy, image_path, aspect_ratio=1.0):
48
+ """Save a numpy image to the disk
49
+
50
+ Parameters:
51
+ image_numpy (numpy array) -- input numpy array
52
+ image_path (str) -- the path of the image
53
+ """
54
+ image_pil = Image.fromarray(image_numpy)
55
+
56
+ image_pil = image_pil.convert('I;16')
57
+
58
+ # image_pil = Image.fromarray(image_numpy)
59
+ # h, w, _ = image_numpy.shape
60
+ #
61
+ # if aspect_ratio > 1.0:
62
+ # image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC)
63
+ # if aspect_ratio < 1.0:
64
+ # image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC)
65
+
66
+ image_pil.save(image_path)
67
+
68
+
69
+ def print_numpy(x, val=True, shp=False):
70
+ """Print the mean, min, max, median, std, and size of a numpy array
71
+
72
+ Parameters:
73
+ val (bool) -- if print the values of the numpy array
74
+ shp (bool) -- if print the shape of the numpy array
75
+ """
76
+ x = x.astype(np.float64)
77
+ if shp:
78
+ print('shape,', x.shape)
79
+ if val:
80
+ x = x.flatten()
81
+ print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % (
82
+ np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x)))
83
+
84
+
85
+ def mkdirs(paths):
86
+ """create empty directories if they don't exist
87
+
88
+ Parameters:
89
+ paths (str list) -- a list of directory paths
90
+ """
91
+ if isinstance(paths, list) and not isinstance(paths, str):
92
+ for path in paths:
93
+ mkdir(path)
94
+ else:
95
+ mkdir(paths)
96
+
97
+
98
+ def mkdir(path):
99
+ """create a single empty directory if it didn't exist
100
+
101
+ Parameters:
102
+ path (str) -- a single directory path
103
+ """
104
+ if not os.path.exists(path):
105
+ os.makedirs(path)
controlnet_aux/lineart/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2022 Caroline Chan
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
controlnet_aux/lineart/__init__.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import warnings
3
+
4
+ import cv2
5
+ import numpy as np
6
+ import torch
7
+ import torch.nn as nn
8
+ from einops import rearrange
9
+ from huggingface_hub import hf_hub_download
10
+ from PIL import Image
11
+
12
+ from ..util import HWC3, resize_image
13
+
14
+ norm_layer = nn.InstanceNorm2d
15
+
16
+
17
+ class ResidualBlock(nn.Module):
18
+ def __init__(self, in_features):
19
+ super(ResidualBlock, self).__init__()
20
+
21
+ conv_block = [ nn.ReflectionPad2d(1),
22
+ nn.Conv2d(in_features, in_features, 3),
23
+ norm_layer(in_features),
24
+ nn.ReLU(inplace=True),
25
+ nn.ReflectionPad2d(1),
26
+ nn.Conv2d(in_features, in_features, 3),
27
+ norm_layer(in_features)
28
+ ]
29
+
30
+ self.conv_block = nn.Sequential(*conv_block)
31
+
32
+ def forward(self, x):
33
+ return x + self.conv_block(x)
34
+
35
+
36
+ class Generator(nn.Module):
37
+ def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
38
+ super(Generator, self).__init__()
39
+
40
+ # Initial convolution block
41
+ model0 = [ nn.ReflectionPad2d(3),
42
+ nn.Conv2d(input_nc, 64, 7),
43
+ norm_layer(64),
44
+ nn.ReLU(inplace=True) ]
45
+ self.model0 = nn.Sequential(*model0)
46
+
47
+ # Downsampling
48
+ model1 = []
49
+ in_features = 64
50
+ out_features = in_features*2
51
+ for _ in range(2):
52
+ model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
53
+ norm_layer(out_features),
54
+ nn.ReLU(inplace=True) ]
55
+ in_features = out_features
56
+ out_features = in_features*2
57
+ self.model1 = nn.Sequential(*model1)
58
+
59
+ model2 = []
60
+ # Residual blocks
61
+ for _ in range(n_residual_blocks):
62
+ model2 += [ResidualBlock(in_features)]
63
+ self.model2 = nn.Sequential(*model2)
64
+
65
+ # Upsampling
66
+ model3 = []
67
+ out_features = in_features//2
68
+ for _ in range(2):
69
+ model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
70
+ norm_layer(out_features),
71
+ nn.ReLU(inplace=True) ]
72
+ in_features = out_features
73
+ out_features = in_features//2
74
+ self.model3 = nn.Sequential(*model3)
75
+
76
+ # Output layer
77
+ model4 = [ nn.ReflectionPad2d(3),
78
+ nn.Conv2d(64, output_nc, 7)]
79
+ if sigmoid:
80
+ model4 += [nn.Sigmoid()]
81
+
82
+ self.model4 = nn.Sequential(*model4)
83
+
84
+ def forward(self, x, cond=None):
85
+ out = self.model0(x)
86
+ out = self.model1(out)
87
+ out = self.model2(out)
88
+ out = self.model3(out)
89
+ out = self.model4(out)
90
+
91
+ return out
92
+
93
+
94
+ class LineartDetector:
95
+ def __init__(self, model, coarse_model):
96
+ self.model = model
97
+ self.model_coarse = coarse_model
98
+
99
+ @classmethod
100
+ def from_pretrained(cls, pretrained_model_or_path, filename=None, coarse_filename=None, cache_dir=None, local_files_only=False):
101
+ filename = filename or "sk_model.pth"
102
+ coarse_filename = coarse_filename or "sk_model2.pth"
103
+
104
+ if os.path.isdir(pretrained_model_or_path):
105
+ model_path = os.path.join(pretrained_model_or_path, filename)
106
+ coarse_model_path = os.path.join(pretrained_model_or_path, coarse_filename)
107
+ else:
108
+ model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only)
109
+ coarse_model_path = hf_hub_download(pretrained_model_or_path, coarse_filename, cache_dir=cache_dir, local_files_only=local_files_only)
110
+
111
+ model = Generator(3, 1, 3)
112
+ model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
113
+ model.eval()
114
+
115
+ coarse_model = Generator(3, 1, 3)
116
+ coarse_model.load_state_dict(torch.load(coarse_model_path, map_location=torch.device('cpu')))
117
+ coarse_model.eval()
118
+
119
+ return cls(model, coarse_model)
120
+
121
+ def to(self, device):
122
+ self.model.to(device)
123
+ self.model_coarse.to(device)
124
+ return self
125
+
126
+ def __call__(self, input_image, coarse=False, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs):
127
+ if "return_pil" in kwargs:
128
+ warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning)
129
+ output_type = "pil" if kwargs["return_pil"] else "np"
130
+ if type(output_type) is bool:
131
+ warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions")
132
+ if output_type:
133
+ output_type = "pil"
134
+
135
+ device = next(iter(self.model.parameters())).device
136
+ if not isinstance(input_image, np.ndarray):
137
+ input_image = np.array(input_image, dtype=np.uint8)
138
+
139
+ input_image = HWC3(input_image)
140
+ input_image = resize_image(input_image, detect_resolution)
141
+
142
+ model = self.model_coarse if coarse else self.model
143
+ assert input_image.ndim == 3
144
+ image = input_image
145
+ with torch.no_grad():
146
+ image = torch.from_numpy(image).float().to(device)
147
+ image = image / 255.0
148
+ image = rearrange(image, 'h w c -> 1 c h w')
149
+ line = model(image)[0][0]
150
+
151
+ line = line.cpu().numpy()
152
+ line = (line * 255.0).clip(0, 255).astype(np.uint8)
153
+
154
+ detected_map = line
155
+
156
+ detected_map = HWC3(detected_map)
157
+
158
+ img = resize_image(input_image, image_resolution)
159
+ H, W, C = img.shape
160
+
161
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
162
+ detected_map = 255 - detected_map
163
+
164
+ if output_type == "pil":
165
+ detected_map = Image.fromarray(detected_map)
166
+
167
+ return detected_map
controlnet_aux/lineart_anime/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2022 Caroline Chan
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
controlnet_aux/lineart_anime/__init__.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import functools
2
+ import os
3
+ import warnings
4
+
5
+ import cv2
6
+ import numpy as np
7
+ import torch
8
+ import torch.nn as nn
9
+ from einops import rearrange
10
+ from huggingface_hub import hf_hub_download
11
+ from PIL import Image
12
+
13
+ from ..util import HWC3, resize_image
14
+
15
+
16
+ class UnetGenerator(nn.Module):
17
+ """Create a Unet-based generator"""
18
+
19
+ def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False):
20
+ """Construct a Unet generator
21
+ Parameters:
22
+ input_nc (int) -- the number of channels in input images
23
+ output_nc (int) -- the number of channels in output images
24
+ num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
25
+ image of size 128x128 will become of size 1x1 # at the bottleneck
26
+ ngf (int) -- the number of filters in the last conv layer
27
+ norm_layer -- normalization layer
28
+ We construct the U-Net from the innermost layer to the outermost layer.
29
+ It is a recursive process.
30
+ """
31
+ super(UnetGenerator, self).__init__()
32
+ # construct unet structure
33
+ unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer
34
+ for _ in range(num_downs - 5): # add intermediate layers with ngf * 8 filters
35
+ unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout)
36
+ # gradually reduce the number of filters from ngf * 8 to ngf
37
+ unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
38
+ unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
39
+ unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
40
+ self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer
41
+
42
+ def forward(self, input):
43
+ """Standard forward"""
44
+ return self.model(input)
45
+
46
+
47
+ class UnetSkipConnectionBlock(nn.Module):
48
+ """Defines the Unet submodule with skip connection.
49
+ X -------------------identity----------------------
50
+ |-- downsampling -- |submodule| -- upsampling --|
51
+ """
52
+
53
+ def __init__(self, outer_nc, inner_nc, input_nc=None,
54
+ submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
55
+ """Construct a Unet submodule with skip connections.
56
+ Parameters:
57
+ outer_nc (int) -- the number of filters in the outer conv layer
58
+ inner_nc (int) -- the number of filters in the inner conv layer
59
+ input_nc (int) -- the number of channels in input images/features
60
+ submodule (UnetSkipConnectionBlock) -- previously defined submodules
61
+ outermost (bool) -- if this module is the outermost module
62
+ innermost (bool) -- if this module is the innermost module
63
+ norm_layer -- normalization layer
64
+ use_dropout (bool) -- if use dropout layers.
65
+ """
66
+ super(UnetSkipConnectionBlock, self).__init__()
67
+ self.outermost = outermost
68
+ if type(norm_layer) == functools.partial:
69
+ use_bias = norm_layer.func == nn.InstanceNorm2d
70
+ else:
71
+ use_bias = norm_layer == nn.InstanceNorm2d
72
+ if input_nc is None:
73
+ input_nc = outer_nc
74
+ downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
75
+ stride=2, padding=1, bias=use_bias)
76
+ downrelu = nn.LeakyReLU(0.2, True)
77
+ downnorm = norm_layer(inner_nc)
78
+ uprelu = nn.ReLU(True)
79
+ upnorm = norm_layer(outer_nc)
80
+
81
+ if outermost:
82
+ upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
83
+ kernel_size=4, stride=2,
84
+ padding=1)
85
+ down = [downconv]
86
+ up = [uprelu, upconv, nn.Tanh()]
87
+ model = down + [submodule] + up
88
+ elif innermost:
89
+ upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
90
+ kernel_size=4, stride=2,
91
+ padding=1, bias=use_bias)
92
+ down = [downrelu, downconv]
93
+ up = [uprelu, upconv, upnorm]
94
+ model = down + up
95
+ else:
96
+ upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
97
+ kernel_size=4, stride=2,
98
+ padding=1, bias=use_bias)
99
+ down = [downrelu, downconv, downnorm]
100
+ up = [uprelu, upconv, upnorm]
101
+
102
+ if use_dropout:
103
+ model = down + [submodule] + up + [nn.Dropout(0.5)]
104
+ else:
105
+ model = down + [submodule] + up
106
+
107
+ self.model = nn.Sequential(*model)
108
+
109
+ def forward(self, x):
110
+ if self.outermost:
111
+ return self.model(x)
112
+ else: # add skip connections
113
+ return torch.cat([x, self.model(x)], 1)
114
+
115
+
116
+ class LineartAnimeDetector:
117
+ def __init__(self, model):
118
+ self.model = model
119
+
120
+ @classmethod
121
+ def from_pretrained(cls, pretrained_model_or_path, filename=None, cache_dir=None, local_files_only=False):
122
+ filename = filename or "netG.pth"
123
+
124
+ if os.path.isdir(pretrained_model_or_path):
125
+ model_path = os.path.join(pretrained_model_or_path, filename)
126
+ else:
127
+ model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only)
128
+
129
+ norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
130
+ net = UnetGenerator(3, 1, 8, 64, norm_layer=norm_layer, use_dropout=False)
131
+ ckpt = torch.load(model_path)
132
+ for key in list(ckpt.keys()):
133
+ if 'module.' in key:
134
+ ckpt[key.replace('module.', '')] = ckpt[key]
135
+ del ckpt[key]
136
+ net.load_state_dict(ckpt)
137
+ net.eval()
138
+
139
+ return cls(net)
140
+
141
+ def to(self, device):
142
+ self.model.to(device)
143
+ return self
144
+
145
+ def __call__(self, input_image, detect_resolution=512, image_resolution=512, output_type="pil", **kwargs):
146
+ if "return_pil" in kwargs:
147
+ warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning)
148
+ output_type = "pil" if kwargs["return_pil"] else "np"
149
+ if type(output_type) is bool:
150
+ warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions")
151
+ if output_type:
152
+ output_type = "pil"
153
+
154
+ device = next(iter(self.model.parameters())).device
155
+ if not isinstance(input_image, np.ndarray):
156
+ input_image = np.array(input_image, dtype=np.uint8)
157
+
158
+ input_image = HWC3(input_image)
159
+ input_image = resize_image(input_image, detect_resolution)
160
+
161
+ H, W, C = input_image.shape
162
+ Hn = 256 * int(np.ceil(float(H) / 256.0))
163
+ Wn = 256 * int(np.ceil(float(W) / 256.0))
164
+ img = cv2.resize(input_image, (Wn, Hn), interpolation=cv2.INTER_CUBIC)
165
+ with torch.no_grad():
166
+ image_feed = torch.from_numpy(img).float().to(device)
167
+ image_feed = image_feed / 127.5 - 1.0
168
+ image_feed = rearrange(image_feed, 'h w c -> 1 c h w')
169
+
170
+ line = self.model(image_feed)[0, 0] * 127.5 + 127.5
171
+ line = line.cpu().numpy()
172
+
173
+ line = cv2.resize(line, (W, H), interpolation=cv2.INTER_CUBIC)
174
+ line = line.clip(0, 255).astype(np.uint8)
175
+
176
+ detected_map = line
177
+
178
+ detected_map = HWC3(detected_map)
179
+
180
+ img = resize_image(input_image, image_resolution)
181
+ H, W, C = img.shape
182
+
183
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
184
+ detected_map = 255 - detected_map
185
+
186
+ if output_type == "pil":
187
+ detected_map = Image.fromarray(detected_map)
188
+
189
+ return detected_map
controlnet_aux/lineart_standard/__init__.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Code based based from the repository comfyui_controlnet_aux:
2
+ # https://github.com/Fannovel16/comfyui_controlnet_aux/blob/main/src/controlnet_aux/lineart_standard/__init__.py
3
+ import cv2
4
+ import numpy as np
5
+ from PIL import Image
6
+
7
+ from ..util import HWC3, resize_image
8
+
9
+
10
+ class LineartStandardDetector:
11
+ def __call__(
12
+ self,
13
+ input_image=None,
14
+ guassian_sigma=6.0,
15
+ intensity_threshold=8,
16
+ detect_resolution=512,
17
+ output_type="pil",
18
+ ):
19
+ if not isinstance(input_image, np.ndarray):
20
+ input_image = np.array(input_image, dtype=np.uint8)
21
+ else:
22
+ output_type = output_type or "np"
23
+
24
+ original_height, original_width, _ = input_image.shape
25
+
26
+ input_image = HWC3(input_image)
27
+ input_image = resize_image(input_image, detect_resolution)
28
+
29
+ x = input_image.astype(np.float32)
30
+ g = cv2.GaussianBlur(x, (0, 0), guassian_sigma)
31
+ intensity = np.min(g - x, axis=2).clip(0, 255)
32
+ intensity /= max(16, np.median(intensity[intensity > intensity_threshold]))
33
+ intensity *= 127
34
+ detected_map = intensity.clip(0, 255).astype(np.uint8)
35
+
36
+ detected_map = HWC3(detected_map)
37
+
38
+ detected_map = cv2.resize(
39
+ detected_map,
40
+ (original_width, original_height),
41
+ interpolation=cv2.INTER_CUBIC,
42
+ )
43
+
44
+ if output_type == "pil":
45
+ detected_map = Image.fromarray(detected_map)
46
+
47
+ return detected_map
controlnet_aux/mediapipe_face/__init__.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+ from typing import Union
3
+
4
+ import cv2
5
+ import numpy as np
6
+ from PIL import Image
7
+
8
+ from ..util import HWC3, resize_image
9
+ from .mediapipe_face_common import generate_annotation
10
+
11
+
12
+ class MediapipeFaceDetector:
13
+ def __call__(self,
14
+ input_image: Union[np.ndarray, Image.Image] = None,
15
+ max_faces: int = 1,
16
+ min_confidence: float = 0.5,
17
+ output_type: str = "pil",
18
+ detect_resolution: int = 512,
19
+ image_resolution: int = 512,
20
+ **kwargs):
21
+
22
+ if "image" in kwargs:
23
+ warnings.warn("image is deprecated, please use `input_image=...` instead.", DeprecationWarning)
24
+ input_image = kwargs.pop("image")
25
+ if input_image is None:
26
+ raise ValueError("input_image must be defined.")
27
+
28
+ if "return_pil" in kwargs:
29
+ warnings.warn("return_pil is deprecated. Use output_type instead.", DeprecationWarning)
30
+ output_type = "pil" if kwargs["return_pil"] else "np"
31
+ if type(output_type) is bool:
32
+ warnings.warn("Passing `True` or `False` to `output_type` is deprecated and will raise an error in future versions")
33
+ if output_type:
34
+ output_type = "pil"
35
+
36
+ if not isinstance(input_image, np.ndarray):
37
+ input_image = np.array(input_image, dtype=np.uint8)
38
+
39
+ input_image = HWC3(input_image)
40
+ input_image = resize_image(input_image, detect_resolution)
41
+
42
+ detected_map = generate_annotation(input_image, max_faces, min_confidence)
43
+ detected_map = HWC3(detected_map)
44
+
45
+ img = resize_image(input_image, image_resolution)
46
+ H, W, C = img.shape
47
+
48
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
49
+
50
+ if output_type == "pil":
51
+ detected_map = Image.fromarray(detected_map)
52
+
53
+ return detected_map
controlnet_aux/mediapipe_face/mediapipe_face_common.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Mapping
2
+ import warnings
3
+
4
+ try:
5
+ import mediapipe as mp
6
+ except ImportError:
7
+ warnings.warn(
8
+ "The module 'mediapipe' is not installed. The package will have limited functionality. Please install it using the command: pip install 'mediapipe'"
9
+ )
10
+
11
+ mp = None
12
+
13
+ import numpy
14
+
15
+ if mp:
16
+ mp_drawing = mp.solutions.drawing_utils
17
+ mp_drawing_styles = mp.solutions.drawing_styles
18
+ mp_face_detection = mp.solutions.face_detection # Only for counting faces.
19
+ mp_face_mesh = mp.solutions.face_mesh
20
+ mp_face_connections = mp.solutions.face_mesh_connections.FACEMESH_TESSELATION
21
+ mp_hand_connections = mp.solutions.hands_connections.HAND_CONNECTIONS
22
+ mp_body_connections = mp.solutions.pose_connections.POSE_CONNECTIONS
23
+
24
+ DrawingSpec = mp.solutions.drawing_styles.DrawingSpec
25
+ PoseLandmark = mp.solutions.drawing_styles.PoseLandmark
26
+
27
+ min_face_size_pixels: int = 64
28
+ f_thick = 2
29
+ f_rad = 1
30
+ right_iris_draw = DrawingSpec(color=(10, 200, 250), thickness=f_thick, circle_radius=f_rad)
31
+ right_eye_draw = DrawingSpec(color=(10, 200, 180), thickness=f_thick, circle_radius=f_rad)
32
+ right_eyebrow_draw = DrawingSpec(color=(10, 220, 180), thickness=f_thick, circle_radius=f_rad)
33
+ left_iris_draw = DrawingSpec(color=(250, 200, 10), thickness=f_thick, circle_radius=f_rad)
34
+ left_eye_draw = DrawingSpec(color=(180, 200, 10), thickness=f_thick, circle_radius=f_rad)
35
+ left_eyebrow_draw = DrawingSpec(color=(180, 220, 10), thickness=f_thick, circle_radius=f_rad)
36
+ mouth_draw = DrawingSpec(color=(10, 180, 10), thickness=f_thick, circle_radius=f_rad)
37
+ head_draw = DrawingSpec(color=(10, 200, 10), thickness=f_thick, circle_radius=f_rad)
38
+
39
+ # mp_face_mesh.FACEMESH_CONTOURS has all the items we care about.
40
+ face_connection_spec = {}
41
+ for edge in mp_face_mesh.FACEMESH_FACE_OVAL:
42
+ face_connection_spec[edge] = head_draw
43
+ for edge in mp_face_mesh.FACEMESH_LEFT_EYE:
44
+ face_connection_spec[edge] = left_eye_draw
45
+ for edge in mp_face_mesh.FACEMESH_LEFT_EYEBROW:
46
+ face_connection_spec[edge] = left_eyebrow_draw
47
+ # for edge in mp_face_mesh.FACEMESH_LEFT_IRIS:
48
+ # face_connection_spec[edge] = left_iris_draw
49
+ for edge in mp_face_mesh.FACEMESH_RIGHT_EYE:
50
+ face_connection_spec[edge] = right_eye_draw
51
+ for edge in mp_face_mesh.FACEMESH_RIGHT_EYEBROW:
52
+ face_connection_spec[edge] = right_eyebrow_draw
53
+ # for edge in mp_face_mesh.FACEMESH_RIGHT_IRIS:
54
+ # face_connection_spec[edge] = right_iris_draw
55
+ for edge in mp_face_mesh.FACEMESH_LIPS:
56
+ face_connection_spec[edge] = mouth_draw
57
+ iris_landmark_spec = {468: right_iris_draw, 473: left_iris_draw}
58
+
59
+
60
+ def draw_pupils(image, landmark_list, drawing_spec, halfwidth: int = 2):
61
+ """We have a custom function to draw the pupils because the mp.draw_landmarks method requires a parameter for all
62
+ landmarks. Until our PR is merged into mediapipe, we need this separate method."""
63
+ if len(image.shape) != 3:
64
+ raise ValueError("Input image must be H,W,C.")
65
+ image_rows, image_cols, image_channels = image.shape
66
+ if image_channels != 3: # BGR channels
67
+ raise ValueError('Input image must contain three channel bgr data.')
68
+ for idx, landmark in enumerate(landmark_list.landmark):
69
+ if (
70
+ (landmark.HasField('visibility') and landmark.visibility < 0.9) or
71
+ (landmark.HasField('presence') and landmark.presence < 0.5)
72
+ ):
73
+ continue
74
+ if landmark.x >= 1.0 or landmark.x < 0 or landmark.y >= 1.0 or landmark.y < 0:
75
+ continue
76
+ image_x = int(image_cols*landmark.x)
77
+ image_y = int(image_rows*landmark.y)
78
+ draw_color = None
79
+ if isinstance(drawing_spec, Mapping):
80
+ if drawing_spec.get(idx) is None:
81
+ continue
82
+ else:
83
+ draw_color = drawing_spec[idx].color
84
+ elif isinstance(drawing_spec, DrawingSpec):
85
+ draw_color = drawing_spec.color
86
+ image[image_y-halfwidth:image_y+halfwidth, image_x-halfwidth:image_x+halfwidth, :] = draw_color
87
+
88
+
89
+ def reverse_channels(image):
90
+ """Given a numpy array in RGB form, convert to BGR. Will also convert from BGR to RGB."""
91
+ # im[:,:,::-1] is a neat hack to convert BGR to RGB by reversing the indexing order.
92
+ # im[:,:,::[2,1,0]] would also work but makes a copy of the data.
93
+ return image[:, :, ::-1]
94
+
95
+
96
+ def generate_annotation(
97
+ img_rgb,
98
+ max_faces: int,
99
+ min_confidence: float
100
+ ):
101
+ """
102
+ Find up to 'max_faces' inside the provided input image.
103
+ If min_face_size_pixels is provided and nonzero it will be used to filter faces that occupy less than this many
104
+ pixels in the image.
105
+ """
106
+ with mp_face_mesh.FaceMesh(
107
+ static_image_mode=True,
108
+ max_num_faces=max_faces,
109
+ refine_landmarks=True,
110
+ min_detection_confidence=min_confidence,
111
+ ) as facemesh:
112
+ img_height, img_width, img_channels = img_rgb.shape
113
+ assert(img_channels == 3)
114
+
115
+ results = facemesh.process(img_rgb).multi_face_landmarks
116
+
117
+ if results is None:
118
+ print("No faces detected in controlnet image for Mediapipe face annotator.")
119
+ return numpy.zeros_like(img_rgb)
120
+
121
+ # Filter faces that are too small
122
+ filtered_landmarks = []
123
+ for lm in results:
124
+ landmarks = lm.landmark
125
+ face_rect = [
126
+ landmarks[0].x,
127
+ landmarks[0].y,
128
+ landmarks[0].x,
129
+ landmarks[0].y,
130
+ ] # Left, up, right, down.
131
+ for i in range(len(landmarks)):
132
+ face_rect[0] = min(face_rect[0], landmarks[i].x)
133
+ face_rect[1] = min(face_rect[1], landmarks[i].y)
134
+ face_rect[2] = max(face_rect[2], landmarks[i].x)
135
+ face_rect[3] = max(face_rect[3], landmarks[i].y)
136
+ if min_face_size_pixels > 0:
137
+ face_width = abs(face_rect[2] - face_rect[0])
138
+ face_height = abs(face_rect[3] - face_rect[1])
139
+ face_width_pixels = face_width * img_width
140
+ face_height_pixels = face_height * img_height
141
+ face_size = min(face_width_pixels, face_height_pixels)
142
+ if face_size >= min_face_size_pixels:
143
+ filtered_landmarks.append(lm)
144
+ else:
145
+ filtered_landmarks.append(lm)
146
+
147
+ # Annotations are drawn in BGR for some reason, but we don't need to flip a zero-filled image at the start.
148
+ empty = numpy.zeros_like(img_rgb)
149
+
150
+ # Draw detected faces:
151
+ for face_landmarks in filtered_landmarks:
152
+ mp_drawing.draw_landmarks(
153
+ empty,
154
+ face_landmarks,
155
+ connections=face_connection_spec.keys(),
156
+ landmark_drawing_spec=None,
157
+ connection_drawing_spec=face_connection_spec
158
+ )
159
+ draw_pupils(empty, face_landmarks, iris_landmark_spec, 2)
160
+
161
+ # Flip BGR back to RGB.
162
+ empty = reverse_channels(empty).copy()
163
+
164
+ return empty
controlnet_aux/midas/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2019 Intel ISL (Intel Intelligent Systems Lab)
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
controlnet_aux/midas/__init__.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import cv2
4
+ import numpy as np
5
+ import torch
6
+ from einops import rearrange
7
+ from huggingface_hub import hf_hub_download
8
+ from PIL import Image
9
+
10
+ from ..util import HWC3, resize_image
11
+ from .api import MiDaSInference
12
+
13
+
14
+ class MidasDetector:
15
+ def __init__(self, model):
16
+ self.model = model
17
+
18
+ @classmethod
19
+ def from_pretrained(cls, pretrained_model_or_path, model_type="dpt_hybrid", filename=None, cache_dir=None, local_files_only=False):
20
+ if pretrained_model_or_path == "lllyasviel/ControlNet":
21
+ filename = filename or "annotator/ckpts/dpt_hybrid-midas-501f0c75.pt"
22
+ else:
23
+ filename = filename or "dpt_hybrid-midas-501f0c75.pt"
24
+
25
+ if os.path.isdir(pretrained_model_or_path):
26
+ model_path = os.path.join(pretrained_model_or_path, filename)
27
+ else:
28
+ model_path = hf_hub_download(pretrained_model_or_path, filename, cache_dir=cache_dir, local_files_only=local_files_only)
29
+
30
+ model = MiDaSInference(model_type=model_type, model_path=model_path)
31
+
32
+ return cls(model)
33
+
34
+
35
+ def to(self, device):
36
+ self.model.to(device)
37
+ return self
38
+
39
+ def __call__(self, input_image, a=np.pi * 2.0, bg_th=0.1, depth_and_normal=False, detect_resolution=512, image_resolution=512, output_type=None):
40
+ device = next(iter(self.model.parameters())).device
41
+ if not isinstance(input_image, np.ndarray):
42
+ input_image = np.array(input_image, dtype=np.uint8)
43
+ output_type = output_type or "pil"
44
+ else:
45
+ output_type = output_type or "np"
46
+
47
+ input_image = HWC3(input_image)
48
+ input_image = resize_image(input_image, detect_resolution)
49
+
50
+ assert input_image.ndim == 3
51
+ image_depth = input_image
52
+ with torch.no_grad():
53
+ image_depth = torch.from_numpy(image_depth).float()
54
+ image_depth = image_depth.to(device)
55
+ image_depth = image_depth / 127.5 - 1.0
56
+ image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
57
+ depth = self.model(image_depth)[0]
58
+
59
+ depth_pt = depth.clone()
60
+ depth_pt -= torch.min(depth_pt)
61
+ depth_pt /= torch.max(depth_pt)
62
+ depth_pt = depth_pt.cpu().numpy()
63
+ depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
64
+
65
+ if depth_and_normal:
66
+ depth_np = depth.cpu().numpy()
67
+ x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3)
68
+ y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3)
69
+ z = np.ones_like(x) * a
70
+ x[depth_pt < bg_th] = 0
71
+ y[depth_pt < bg_th] = 0
72
+ normal = np.stack([x, y, z], axis=2)
73
+ normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
74
+ normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)[:, :, ::-1]
75
+
76
+ depth_image = HWC3(depth_image)
77
+ if depth_and_normal:
78
+ normal_image = HWC3(normal_image)
79
+
80
+ img = resize_image(input_image, image_resolution)
81
+ H, W, C = img.shape
82
+
83
+ depth_image = cv2.resize(depth_image, (W, H), interpolation=cv2.INTER_LINEAR)
84
+ if depth_and_normal:
85
+ normal_image = cv2.resize(normal_image, (W, H), interpolation=cv2.INTER_LINEAR)
86
+
87
+ if output_type == "pil":
88
+ depth_image = Image.fromarray(depth_image)
89
+ if depth_and_normal:
90
+ normal_image = Image.fromarray(normal_image)
91
+
92
+ if depth_and_normal:
93
+ return depth_image, normal_image
94
+ else:
95
+ return depth_image
controlnet_aux/midas/api.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # based on https://github.com/isl-org/MiDaS
2
+
3
+ import cv2
4
+ import os
5
+ import torch
6
+ import torch.nn as nn
7
+ from torchvision.transforms import Compose
8
+
9
+ from .midas.dpt_depth import DPTDepthModel
10
+ from .midas.midas_net import MidasNet
11
+ from .midas.midas_net_custom import MidasNet_small
12
+ from .midas.transforms import Resize, NormalizeImage, PrepareForNet
13
+ from ..util import annotator_ckpts_path
14
+
15
+
16
+ ISL_PATHS = {
17
+ "dpt_large": os.path.join(annotator_ckpts_path, "dpt_large-midas-2f21e586.pt"),
18
+ "dpt_hybrid": os.path.join(annotator_ckpts_path, "dpt_hybrid-midas-501f0c75.pt"),
19
+ "midas_v21": "",
20
+ "midas_v21_small": "",
21
+ }
22
+
23
+ remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt"
24
+
25
+
26
+ def disabled_train(self, mode=True):
27
+ """Overwrite model.train with this function to make sure train/eval mode
28
+ does not change anymore."""
29
+ return self
30
+
31
+
32
+ def load_midas_transform(model_type):
33
+ # https://github.com/isl-org/MiDaS/blob/master/run.py
34
+ # load transform only
35
+ if model_type == "dpt_large": # DPT-Large
36
+ net_w, net_h = 384, 384
37
+ resize_mode = "minimal"
38
+ normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
39
+
40
+ elif model_type == "dpt_hybrid": # DPT-Hybrid
41
+ net_w, net_h = 384, 384
42
+ resize_mode = "minimal"
43
+ normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
44
+
45
+ elif model_type == "midas_v21":
46
+ net_w, net_h = 384, 384
47
+ resize_mode = "upper_bound"
48
+ normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
49
+
50
+ elif model_type == "midas_v21_small":
51
+ net_w, net_h = 256, 256
52
+ resize_mode = "upper_bound"
53
+ normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
54
+
55
+ else:
56
+ assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
57
+
58
+ transform = Compose(
59
+ [
60
+ Resize(
61
+ net_w,
62
+ net_h,
63
+ resize_target=None,
64
+ keep_aspect_ratio=True,
65
+ ensure_multiple_of=32,
66
+ resize_method=resize_mode,
67
+ image_interpolation_method=cv2.INTER_CUBIC,
68
+ ),
69
+ normalization,
70
+ PrepareForNet(),
71
+ ]
72
+ )
73
+
74
+ return transform
75
+
76
+
77
+ def load_model(model_type, model_path=None):
78
+ # https://github.com/isl-org/MiDaS/blob/master/run.py
79
+ # load network
80
+ model_path = model_path or ISL_PATHS[model_type]
81
+ if model_type == "dpt_large": # DPT-Large
82
+ model = DPTDepthModel(
83
+ path=model_path,
84
+ backbone="vitl16_384",
85
+ non_negative=True,
86
+ )
87
+ net_w, net_h = 384, 384
88
+ resize_mode = "minimal"
89
+ normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
90
+
91
+ elif model_type == "dpt_hybrid": # DPT-Hybrid
92
+ if not os.path.exists(model_path):
93
+ from basicsr.utils.download_util import load_file_from_url
94
+ load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
95
+
96
+ model = DPTDepthModel(
97
+ path=model_path,
98
+ backbone="vitb_rn50_384",
99
+ non_negative=True,
100
+ )
101
+ net_w, net_h = 384, 384
102
+ resize_mode = "minimal"
103
+ normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
104
+
105
+ elif model_type == "midas_v21":
106
+ model = MidasNet(model_path, non_negative=True)
107
+ net_w, net_h = 384, 384
108
+ resize_mode = "upper_bound"
109
+ normalization = NormalizeImage(
110
+ mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
111
+ )
112
+
113
+ elif model_type == "midas_v21_small":
114
+ model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
115
+ non_negative=True, blocks={'expand': True})
116
+ net_w, net_h = 256, 256
117
+ resize_mode = "upper_bound"
118
+ normalization = NormalizeImage(
119
+ mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
120
+ )
121
+
122
+ else:
123
+ print(f"model_type '{model_type}' not implemented, use: --model_type large")
124
+ assert False
125
+
126
+ transform = Compose(
127
+ [
128
+ Resize(
129
+ net_w,
130
+ net_h,
131
+ resize_target=None,
132
+ keep_aspect_ratio=True,
133
+ ensure_multiple_of=32,
134
+ resize_method=resize_mode,
135
+ image_interpolation_method=cv2.INTER_CUBIC,
136
+ ),
137
+ normalization,
138
+ PrepareForNet(),
139
+ ]
140
+ )
141
+
142
+ return model.eval(), transform
143
+
144
+
145
+ class MiDaSInference(nn.Module):
146
+ MODEL_TYPES_TORCH_HUB = [
147
+ "DPT_Large",
148
+ "DPT_Hybrid",
149
+ "MiDaS_small"
150
+ ]
151
+ MODEL_TYPES_ISL = [
152
+ "dpt_large",
153
+ "dpt_hybrid",
154
+ "midas_v21",
155
+ "midas_v21_small",
156
+ ]
157
+
158
+ def __init__(self, model_type, model_path):
159
+ super().__init__()
160
+ assert (model_type in self.MODEL_TYPES_ISL)
161
+ model, _ = load_model(model_type, model_path)
162
+ self.model = model
163
+ self.model.train = disabled_train
164
+
165
+ def forward(self, x):
166
+ with torch.no_grad():
167
+ prediction = self.model(x)
168
+ return prediction
169
+
controlnet_aux/midas/midas/__init__.py ADDED
File without changes
controlnet_aux/midas/midas/base_model.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ class BaseModel(torch.nn.Module):
5
+ def load(self, path):
6
+ """Load model from file.
7
+
8
+ Args:
9
+ path (str): file path
10
+ """
11
+ parameters = torch.load(path, map_location=torch.device('cpu'))
12
+
13
+ if "optimizer" in parameters:
14
+ parameters = parameters["model"]
15
+
16
+ self.load_state_dict(parameters)
controlnet_aux/midas/midas/blocks.py ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from .vit import (
5
+ _make_pretrained_vitb_rn50_384,
6
+ _make_pretrained_vitl16_384,
7
+ _make_pretrained_vitb16_384,
8
+ forward_vit,
9
+ )
10
+
11
+ def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
12
+ if backbone == "vitl16_384":
13
+ pretrained = _make_pretrained_vitl16_384(
14
+ use_pretrained, hooks=hooks, use_readout=use_readout
15
+ )
16
+ scratch = _make_scratch(
17
+ [256, 512, 1024, 1024], features, groups=groups, expand=expand
18
+ ) # ViT-L/16 - 85.0% Top1 (backbone)
19
+ elif backbone == "vitb_rn50_384":
20
+ pretrained = _make_pretrained_vitb_rn50_384(
21
+ use_pretrained,
22
+ hooks=hooks,
23
+ use_vit_only=use_vit_only,
24
+ use_readout=use_readout,
25
+ )
26
+ scratch = _make_scratch(
27
+ [256, 512, 768, 768], features, groups=groups, expand=expand
28
+ ) # ViT-H/16 - 85.0% Top1 (backbone)
29
+ elif backbone == "vitb16_384":
30
+ pretrained = _make_pretrained_vitb16_384(
31
+ use_pretrained, hooks=hooks, use_readout=use_readout
32
+ )
33
+ scratch = _make_scratch(
34
+ [96, 192, 384, 768], features, groups=groups, expand=expand
35
+ ) # ViT-B/16 - 84.6% Top1 (backbone)
36
+ elif backbone == "resnext101_wsl":
37
+ pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
38
+ scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
39
+ elif backbone == "efficientnet_lite3":
40
+ pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
41
+ scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
42
+ else:
43
+ print(f"Backbone '{backbone}' not implemented")
44
+ assert False
45
+
46
+ return pretrained, scratch
47
+
48
+
49
+ def _make_scratch(in_shape, out_shape, groups=1, expand=False):
50
+ scratch = nn.Module()
51
+
52
+ out_shape1 = out_shape
53
+ out_shape2 = out_shape
54
+ out_shape3 = out_shape
55
+ out_shape4 = out_shape
56
+ if expand==True:
57
+ out_shape1 = out_shape
58
+ out_shape2 = out_shape*2
59
+ out_shape3 = out_shape*4
60
+ out_shape4 = out_shape*8
61
+
62
+ scratch.layer1_rn = nn.Conv2d(
63
+ in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
64
+ )
65
+ scratch.layer2_rn = nn.Conv2d(
66
+ in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
67
+ )
68
+ scratch.layer3_rn = nn.Conv2d(
69
+ in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
70
+ )
71
+ scratch.layer4_rn = nn.Conv2d(
72
+ in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
73
+ )
74
+
75
+ return scratch
76
+
77
+
78
+ def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
79
+ efficientnet = torch.hub.load(
80
+ "rwightman/gen-efficientnet-pytorch",
81
+ "tf_efficientnet_lite3",
82
+ pretrained=use_pretrained,
83
+ exportable=exportable
84
+ )
85
+ return _make_efficientnet_backbone(efficientnet)
86
+
87
+
88
+ def _make_efficientnet_backbone(effnet):
89
+ pretrained = nn.Module()
90
+
91
+ pretrained.layer1 = nn.Sequential(
92
+ effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
93
+ )
94
+ pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
95
+ pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
96
+ pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
97
+
98
+ return pretrained
99
+
100
+
101
+ def _make_resnet_backbone(resnet):
102
+ pretrained = nn.Module()
103
+ pretrained.layer1 = nn.Sequential(
104
+ resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
105
+ )
106
+
107
+ pretrained.layer2 = resnet.layer2
108
+ pretrained.layer3 = resnet.layer3
109
+ pretrained.layer4 = resnet.layer4
110
+
111
+ return pretrained
112
+
113
+
114
+ def _make_pretrained_resnext101_wsl(use_pretrained):
115
+ resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
116
+ return _make_resnet_backbone(resnet)
117
+
118
+
119
+
120
+ class Interpolate(nn.Module):
121
+ """Interpolation module.
122
+ """
123
+
124
+ def __init__(self, scale_factor, mode, align_corners=False):
125
+ """Init.
126
+
127
+ Args:
128
+ scale_factor (float): scaling
129
+ mode (str): interpolation mode
130
+ """
131
+ super(Interpolate, self).__init__()
132
+
133
+ self.interp = nn.functional.interpolate
134
+ self.scale_factor = scale_factor
135
+ self.mode = mode
136
+ self.align_corners = align_corners
137
+
138
+ def forward(self, x):
139
+ """Forward pass.
140
+
141
+ Args:
142
+ x (tensor): input
143
+
144
+ Returns:
145
+ tensor: interpolated data
146
+ """
147
+
148
+ x = self.interp(
149
+ x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
150
+ )
151
+
152
+ return x
153
+
154
+
155
+ class ResidualConvUnit(nn.Module):
156
+ """Residual convolution module.
157
+ """
158
+
159
+ def __init__(self, features):
160
+ """Init.
161
+
162
+ Args:
163
+ features (int): number of features
164
+ """
165
+ super().__init__()
166
+
167
+ self.conv1 = nn.Conv2d(
168
+ features, features, kernel_size=3, stride=1, padding=1, bias=True
169
+ )
170
+
171
+ self.conv2 = nn.Conv2d(
172
+ features, features, kernel_size=3, stride=1, padding=1, bias=True
173
+ )
174
+
175
+ self.relu = nn.ReLU(inplace=True)
176
+
177
+ def forward(self, x):
178
+ """Forward pass.
179
+
180
+ Args:
181
+ x (tensor): input
182
+
183
+ Returns:
184
+ tensor: output
185
+ """
186
+ out = self.relu(x)
187
+ out = self.conv1(out)
188
+ out = self.relu(out)
189
+ out = self.conv2(out)
190
+
191
+ return out + x
192
+
193
+
194
+ class FeatureFusionBlock(nn.Module):
195
+ """Feature fusion block.
196
+ """
197
+
198
+ def __init__(self, features):
199
+ """Init.
200
+
201
+ Args:
202
+ features (int): number of features
203
+ """
204
+ super(FeatureFusionBlock, self).__init__()
205
+
206
+ self.resConfUnit1 = ResidualConvUnit(features)
207
+ self.resConfUnit2 = ResidualConvUnit(features)
208
+
209
+ def forward(self, *xs):
210
+ """Forward pass.
211
+
212
+ Returns:
213
+ tensor: output
214
+ """
215
+ output = xs[0]
216
+
217
+ if len(xs) == 2:
218
+ output += self.resConfUnit1(xs[1])
219
+
220
+ output = self.resConfUnit2(output)
221
+
222
+ output = nn.functional.interpolate(
223
+ output, scale_factor=2, mode="bilinear", align_corners=True
224
+ )
225
+
226
+ return output
227
+
228
+
229
+
230
+
231
+ class ResidualConvUnit_custom(nn.Module):
232
+ """Residual convolution module.
233
+ """
234
+
235
+ def __init__(self, features, activation, bn):
236
+ """Init.
237
+
238
+ Args:
239
+ features (int): number of features
240
+ """
241
+ super().__init__()
242
+
243
+ self.bn = bn
244
+
245
+ self.groups=1
246
+
247
+ self.conv1 = nn.Conv2d(
248
+ features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
249
+ )
250
+
251
+ self.conv2 = nn.Conv2d(
252
+ features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
253
+ )
254
+
255
+ if self.bn==True:
256
+ self.bn1 = nn.BatchNorm2d(features)
257
+ self.bn2 = nn.BatchNorm2d(features)
258
+
259
+ self.activation = activation
260
+
261
+ self.skip_add = nn.quantized.FloatFunctional()
262
+
263
+ def forward(self, x):
264
+ """Forward pass.
265
+
266
+ Args:
267
+ x (tensor): input
268
+
269
+ Returns:
270
+ tensor: output
271
+ """
272
+
273
+ out = self.activation(x)
274
+ out = self.conv1(out)
275
+ if self.bn==True:
276
+ out = self.bn1(out)
277
+
278
+ out = self.activation(out)
279
+ out = self.conv2(out)
280
+ if self.bn==True:
281
+ out = self.bn2(out)
282
+
283
+ if self.groups > 1:
284
+ out = self.conv_merge(out)
285
+
286
+ return self.skip_add.add(out, x)
287
+
288
+ # return out + x
289
+
290
+
291
+ class FeatureFusionBlock_custom(nn.Module):
292
+ """Feature fusion block.
293
+ """
294
+
295
+ def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
296
+ """Init.
297
+
298
+ Args:
299
+ features (int): number of features
300
+ """
301
+ super(FeatureFusionBlock_custom, self).__init__()
302
+
303
+ self.deconv = deconv
304
+ self.align_corners = align_corners
305
+
306
+ self.groups=1
307
+
308
+ self.expand = expand
309
+ out_features = features
310
+ if self.expand==True:
311
+ out_features = features//2
312
+
313
+ self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
314
+
315
+ self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
316
+ self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
317
+
318
+ self.skip_add = nn.quantized.FloatFunctional()
319
+
320
+ def forward(self, *xs):
321
+ """Forward pass.
322
+
323
+ Returns:
324
+ tensor: output
325
+ """
326
+ output = xs[0]
327
+
328
+ if len(xs) == 2:
329
+ res = self.resConfUnit1(xs[1])
330
+ output = self.skip_add.add(output, res)
331
+ # output += res
332
+
333
+ output = self.resConfUnit2(output)
334
+
335
+ output = nn.functional.interpolate(
336
+ output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
337
+ )
338
+
339
+ output = self.out_conv(output)
340
+
341
+ return output
342
+
controlnet_aux/midas/midas/dpt_depth.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from .base_model import BaseModel
6
+ from .blocks import (
7
+ FeatureFusionBlock,
8
+ FeatureFusionBlock_custom,
9
+ Interpolate,
10
+ _make_encoder,
11
+ forward_vit,
12
+ )
13
+
14
+
15
+ def _make_fusion_block(features, use_bn):
16
+ return FeatureFusionBlock_custom(
17
+ features,
18
+ nn.ReLU(False),
19
+ deconv=False,
20
+ bn=use_bn,
21
+ expand=False,
22
+ align_corners=True,
23
+ )
24
+
25
+
26
+ class DPT(BaseModel):
27
+ def __init__(
28
+ self,
29
+ head,
30
+ features=256,
31
+ backbone="vitb_rn50_384",
32
+ readout="project",
33
+ channels_last=False,
34
+ use_bn=False,
35
+ ):
36
+
37
+ super(DPT, self).__init__()
38
+
39
+ self.channels_last = channels_last
40
+
41
+ hooks = {
42
+ "vitb_rn50_384": [0, 1, 8, 11],
43
+ "vitb16_384": [2, 5, 8, 11],
44
+ "vitl16_384": [5, 11, 17, 23],
45
+ }
46
+
47
+ # Instantiate backbone and reassemble blocks
48
+ self.pretrained, self.scratch = _make_encoder(
49
+ backbone,
50
+ features,
51
+ False, # Set to true of you want to train from scratch, uses ImageNet weights
52
+ groups=1,
53
+ expand=False,
54
+ exportable=False,
55
+ hooks=hooks[backbone],
56
+ use_readout=readout,
57
+ )
58
+
59
+ self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
60
+ self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
61
+ self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
62
+ self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
63
+
64
+ self.scratch.output_conv = head
65
+
66
+
67
+ def forward(self, x):
68
+ if self.channels_last == True:
69
+ x.contiguous(memory_format=torch.channels_last)
70
+
71
+ layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
72
+
73
+ layer_1_rn = self.scratch.layer1_rn(layer_1)
74
+ layer_2_rn = self.scratch.layer2_rn(layer_2)
75
+ layer_3_rn = self.scratch.layer3_rn(layer_3)
76
+ layer_4_rn = self.scratch.layer4_rn(layer_4)
77
+
78
+ path_4 = self.scratch.refinenet4(layer_4_rn)
79
+ path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
80
+ path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
81
+ path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
82
+
83
+ out = self.scratch.output_conv(path_1)
84
+
85
+ return out
86
+
87
+
88
+ class DPTDepthModel(DPT):
89
+ def __init__(self, path=None, non_negative=True, **kwargs):
90
+ features = kwargs["features"] if "features" in kwargs else 256
91
+
92
+ head = nn.Sequential(
93
+ nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
94
+ Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
95
+ nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
96
+ nn.ReLU(True),
97
+ nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
98
+ nn.ReLU(True) if non_negative else nn.Identity(),
99
+ nn.Identity(),
100
+ )
101
+
102
+ super().__init__(head, **kwargs)
103
+
104
+ if path is not None:
105
+ self.load(path)
106
+
107
+ def forward(self, x):
108
+ return super().forward(x).squeeze(dim=1)
109
+
controlnet_aux/midas/midas/midas_net.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """MidashNet: Network for monocular depth estimation trained by mixing several datasets.
2
+ This file contains code that is adapted from
3
+ https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
4
+ """
5
+ import torch
6
+ import torch.nn as nn
7
+
8
+ from .base_model import BaseModel
9
+ from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
10
+
11
+
12
+ class MidasNet(BaseModel):
13
+ """Network for monocular depth estimation.
14
+ """
15
+
16
+ def __init__(self, path=None, features=256, non_negative=True):
17
+ """Init.
18
+
19
+ Args:
20
+ path (str, optional): Path to saved model. Defaults to None.
21
+ features (int, optional): Number of features. Defaults to 256.
22
+ backbone (str, optional): Backbone network for encoder. Defaults to resnet50
23
+ """
24
+ print("Loading weights: ", path)
25
+
26
+ super(MidasNet, self).__init__()
27
+
28
+ use_pretrained = False if path is None else True
29
+
30
+ self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
31
+
32
+ self.scratch.refinenet4 = FeatureFusionBlock(features)
33
+ self.scratch.refinenet3 = FeatureFusionBlock(features)
34
+ self.scratch.refinenet2 = FeatureFusionBlock(features)
35
+ self.scratch.refinenet1 = FeatureFusionBlock(features)
36
+
37
+ self.scratch.output_conv = nn.Sequential(
38
+ nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
39
+ Interpolate(scale_factor=2, mode="bilinear"),
40
+ nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
41
+ nn.ReLU(True),
42
+ nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
43
+ nn.ReLU(True) if non_negative else nn.Identity(),
44
+ )
45
+
46
+ if path:
47
+ self.load(path)
48
+
49
+ def forward(self, x):
50
+ """Forward pass.
51
+
52
+ Args:
53
+ x (tensor): input data (image)
54
+
55
+ Returns:
56
+ tensor: depth
57
+ """
58
+
59
+ layer_1 = self.pretrained.layer1(x)
60
+ layer_2 = self.pretrained.layer2(layer_1)
61
+ layer_3 = self.pretrained.layer3(layer_2)
62
+ layer_4 = self.pretrained.layer4(layer_3)
63
+
64
+ layer_1_rn = self.scratch.layer1_rn(layer_1)
65
+ layer_2_rn = self.scratch.layer2_rn(layer_2)
66
+ layer_3_rn = self.scratch.layer3_rn(layer_3)
67
+ layer_4_rn = self.scratch.layer4_rn(layer_4)
68
+
69
+ path_4 = self.scratch.refinenet4(layer_4_rn)
70
+ path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
71
+ path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
72
+ path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
73
+
74
+ out = self.scratch.output_conv(path_1)
75
+
76
+ return torch.squeeze(out, dim=1)
controlnet_aux/midas/midas/midas_net_custom.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """MidashNet: Network for monocular depth estimation trained by mixing several datasets.
2
+ This file contains code that is adapted from
3
+ https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
4
+ """
5
+ import torch
6
+ import torch.nn as nn
7
+
8
+ from .base_model import BaseModel
9
+ from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
10
+
11
+
12
+ class MidasNet_small(BaseModel):
13
+ """Network for monocular depth estimation.
14
+ """
15
+
16
+ def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
17
+ blocks={'expand': True}):
18
+ """Init.
19
+
20
+ Args:
21
+ path (str, optional): Path to saved model. Defaults to None.
22
+ features (int, optional): Number of features. Defaults to 256.
23
+ backbone (str, optional): Backbone network for encoder. Defaults to resnet50
24
+ """
25
+ print("Loading weights: ", path)
26
+
27
+ super(MidasNet_small, self).__init__()
28
+
29
+ use_pretrained = False if path else True
30
+
31
+ self.channels_last = channels_last
32
+ self.blocks = blocks
33
+ self.backbone = backbone
34
+
35
+ self.groups = 1
36
+
37
+ features1=features
38
+ features2=features
39
+ features3=features
40
+ features4=features
41
+ self.expand = False
42
+ if "expand" in self.blocks and self.blocks['expand'] == True:
43
+ self.expand = True
44
+ features1=features
45
+ features2=features*2
46
+ features3=features*4
47
+ features4=features*8
48
+
49
+ self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
50
+
51
+ self.scratch.activation = nn.ReLU(False)
52
+
53
+ self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
54
+ self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
55
+ self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
56
+ self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
57
+
58
+
59
+ self.scratch.output_conv = nn.Sequential(
60
+ nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
61
+ Interpolate(scale_factor=2, mode="bilinear"),
62
+ nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
63
+ self.scratch.activation,
64
+ nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
65
+ nn.ReLU(True) if non_negative else nn.Identity(),
66
+ nn.Identity(),
67
+ )
68
+
69
+ if path:
70
+ self.load(path)
71
+
72
+
73
+ def forward(self, x):
74
+ """Forward pass.
75
+
76
+ Args:
77
+ x (tensor): input data (image)
78
+
79
+ Returns:
80
+ tensor: depth
81
+ """
82
+ if self.channels_last==True:
83
+ print("self.channels_last = ", self.channels_last)
84
+ x.contiguous(memory_format=torch.channels_last)
85
+
86
+
87
+ layer_1 = self.pretrained.layer1(x)
88
+ layer_2 = self.pretrained.layer2(layer_1)
89
+ layer_3 = self.pretrained.layer3(layer_2)
90
+ layer_4 = self.pretrained.layer4(layer_3)
91
+
92
+ layer_1_rn = self.scratch.layer1_rn(layer_1)
93
+ layer_2_rn = self.scratch.layer2_rn(layer_2)
94
+ layer_3_rn = self.scratch.layer3_rn(layer_3)
95
+ layer_4_rn = self.scratch.layer4_rn(layer_4)
96
+
97
+
98
+ path_4 = self.scratch.refinenet4(layer_4_rn)
99
+ path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
100
+ path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
101
+ path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
102
+
103
+ out = self.scratch.output_conv(path_1)
104
+
105
+ return torch.squeeze(out, dim=1)
106
+
107
+
108
+
109
+ def fuse_model(m):
110
+ prev_previous_type = nn.Identity()
111
+ prev_previous_name = ''
112
+ previous_type = nn.Identity()
113
+ previous_name = ''
114
+ for name, module in m.named_modules():
115
+ if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
116
+ # print("FUSED ", prev_previous_name, previous_name, name)
117
+ torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
118
+ elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
119
+ # print("FUSED ", prev_previous_name, previous_name)
120
+ torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
121
+ # elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
122
+ # print("FUSED ", previous_name, name)
123
+ # torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
124
+
125
+ prev_previous_type = previous_type
126
+ prev_previous_name = previous_name
127
+ previous_type = type(module)
128
+ previous_name = name
controlnet_aux/midas/midas/transforms.py ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+ import math
4
+
5
+
6
+ def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
7
+ """Rezise the sample to ensure the given size. Keeps aspect ratio.
8
+
9
+ Args:
10
+ sample (dict): sample
11
+ size (tuple): image size
12
+
13
+ Returns:
14
+ tuple: new size
15
+ """
16
+ shape = list(sample["disparity"].shape)
17
+
18
+ if shape[0] >= size[0] and shape[1] >= size[1]:
19
+ return sample
20
+
21
+ scale = [0, 0]
22
+ scale[0] = size[0] / shape[0]
23
+ scale[1] = size[1] / shape[1]
24
+
25
+ scale = max(scale)
26
+
27
+ shape[0] = math.ceil(scale * shape[0])
28
+ shape[1] = math.ceil(scale * shape[1])
29
+
30
+ # resize
31
+ sample["image"] = cv2.resize(
32
+ sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
33
+ )
34
+
35
+ sample["disparity"] = cv2.resize(
36
+ sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
37
+ )
38
+ sample["mask"] = cv2.resize(
39
+ sample["mask"].astype(np.float32),
40
+ tuple(shape[::-1]),
41
+ interpolation=cv2.INTER_NEAREST,
42
+ )
43
+ sample["mask"] = sample["mask"].astype(bool)
44
+
45
+ return tuple(shape)
46
+
47
+
48
+ class Resize(object):
49
+ """Resize sample to given size (width, height).
50
+ """
51
+
52
+ def __init__(
53
+ self,
54
+ width,
55
+ height,
56
+ resize_target=True,
57
+ keep_aspect_ratio=False,
58
+ ensure_multiple_of=1,
59
+ resize_method="lower_bound",
60
+ image_interpolation_method=cv2.INTER_AREA,
61
+ ):
62
+ """Init.
63
+
64
+ Args:
65
+ width (int): desired output width
66
+ height (int): desired output height
67
+ resize_target (bool, optional):
68
+ True: Resize the full sample (image, mask, target).
69
+ False: Resize image only.
70
+ Defaults to True.
71
+ keep_aspect_ratio (bool, optional):
72
+ True: Keep the aspect ratio of the input sample.
73
+ Output sample might not have the given width and height, and
74
+ resize behaviour depends on the parameter 'resize_method'.
75
+ Defaults to False.
76
+ ensure_multiple_of (int, optional):
77
+ Output width and height is constrained to be multiple of this parameter.
78
+ Defaults to 1.
79
+ resize_method (str, optional):
80
+ "lower_bound": Output will be at least as large as the given size.
81
+ "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
82
+ "minimal": Scale as least as possible. (Output size might be smaller than given size.)
83
+ Defaults to "lower_bound".
84
+ """
85
+ self.__width = width
86
+ self.__height = height
87
+
88
+ self.__resize_target = resize_target
89
+ self.__keep_aspect_ratio = keep_aspect_ratio
90
+ self.__multiple_of = ensure_multiple_of
91
+ self.__resize_method = resize_method
92
+ self.__image_interpolation_method = image_interpolation_method
93
+
94
+ def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
95
+ y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
96
+
97
+ if max_val is not None and y > max_val:
98
+ y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
99
+
100
+ if y < min_val:
101
+ y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
102
+
103
+ return y
104
+
105
+ def get_size(self, width, height):
106
+ # determine new height and width
107
+ scale_height = self.__height / height
108
+ scale_width = self.__width / width
109
+
110
+ if self.__keep_aspect_ratio:
111
+ if self.__resize_method == "lower_bound":
112
+ # scale such that output size is lower bound
113
+ if scale_width > scale_height:
114
+ # fit width
115
+ scale_height = scale_width
116
+ else:
117
+ # fit height
118
+ scale_width = scale_height
119
+ elif self.__resize_method == "upper_bound":
120
+ # scale such that output size is upper bound
121
+ if scale_width < scale_height:
122
+ # fit width
123
+ scale_height = scale_width
124
+ else:
125
+ # fit height
126
+ scale_width = scale_height
127
+ elif self.__resize_method == "minimal":
128
+ # scale as least as possbile
129
+ if abs(1 - scale_width) < abs(1 - scale_height):
130
+ # fit width
131
+ scale_height = scale_width
132
+ else:
133
+ # fit height
134
+ scale_width = scale_height
135
+ else:
136
+ raise ValueError(
137
+ f"resize_method {self.__resize_method} not implemented"
138
+ )
139
+
140
+ if self.__resize_method == "lower_bound":
141
+ new_height = self.constrain_to_multiple_of(
142
+ scale_height * height, min_val=self.__height
143
+ )
144
+ new_width = self.constrain_to_multiple_of(
145
+ scale_width * width, min_val=self.__width
146
+ )
147
+ elif self.__resize_method == "upper_bound":
148
+ new_height = self.constrain_to_multiple_of(
149
+ scale_height * height, max_val=self.__height
150
+ )
151
+ new_width = self.constrain_to_multiple_of(
152
+ scale_width * width, max_val=self.__width
153
+ )
154
+ elif self.__resize_method == "minimal":
155
+ new_height = self.constrain_to_multiple_of(scale_height * height)
156
+ new_width = self.constrain_to_multiple_of(scale_width * width)
157
+ else:
158
+ raise ValueError(f"resize_method {self.__resize_method} not implemented")
159
+
160
+ return (new_width, new_height)
161
+
162
+ def __call__(self, sample):
163
+ width, height = self.get_size(
164
+ sample["image"].shape[1], sample["image"].shape[0]
165
+ )
166
+
167
+ # resize sample
168
+ sample["image"] = cv2.resize(
169
+ sample["image"],
170
+ (width, height),
171
+ interpolation=self.__image_interpolation_method,
172
+ )
173
+
174
+ if self.__resize_target:
175
+ if "disparity" in sample:
176
+ sample["disparity"] = cv2.resize(
177
+ sample["disparity"],
178
+ (width, height),
179
+ interpolation=cv2.INTER_NEAREST,
180
+ )
181
+
182
+ if "depth" in sample:
183
+ sample["depth"] = cv2.resize(
184
+ sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
185
+ )
186
+
187
+ sample["mask"] = cv2.resize(
188
+ sample["mask"].astype(np.float32),
189
+ (width, height),
190
+ interpolation=cv2.INTER_NEAREST,
191
+ )
192
+ sample["mask"] = sample["mask"].astype(bool)
193
+
194
+ return sample
195
+
196
+
197
+ class NormalizeImage(object):
198
+ """Normlize image by given mean and std.
199
+ """
200
+
201
+ def __init__(self, mean, std):
202
+ self.__mean = mean
203
+ self.__std = std
204
+
205
+ def __call__(self, sample):
206
+ sample["image"] = (sample["image"] - self.__mean) / self.__std
207
+
208
+ return sample
209
+
210
+
211
+ class PrepareForNet(object):
212
+ """Prepare sample for usage as network input.
213
+ """
214
+
215
+ def __init__(self):
216
+ pass
217
+
218
+ def __call__(self, sample):
219
+ image = np.transpose(sample["image"], (2, 0, 1))
220
+ sample["image"] = np.ascontiguousarray(image).astype(np.float32)
221
+
222
+ if "mask" in sample:
223
+ sample["mask"] = sample["mask"].astype(np.float32)
224
+ sample["mask"] = np.ascontiguousarray(sample["mask"])
225
+
226
+ if "disparity" in sample:
227
+ disparity = sample["disparity"].astype(np.float32)
228
+ sample["disparity"] = np.ascontiguousarray(disparity)
229
+
230
+ if "depth" in sample:
231
+ depth = sample["depth"].astype(np.float32)
232
+ sample["depth"] = np.ascontiguousarray(depth)
233
+
234
+ return sample
controlnet_aux/midas/midas/vit.py ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import timm
4
+ import types
5
+ import math
6
+ import torch.nn.functional as F
7
+
8
+
9
+ class Slice(nn.Module):
10
+ def __init__(self, start_index=1):
11
+ super(Slice, self).__init__()
12
+ self.start_index = start_index
13
+
14
+ def forward(self, x):
15
+ return x[:, self.start_index :]
16
+
17
+
18
+ class AddReadout(nn.Module):
19
+ def __init__(self, start_index=1):
20
+ super(AddReadout, self).__init__()
21
+ self.start_index = start_index
22
+
23
+ def forward(self, x):
24
+ if self.start_index == 2:
25
+ readout = (x[:, 0] + x[:, 1]) / 2
26
+ else:
27
+ readout = x[:, 0]
28
+ return x[:, self.start_index :] + readout.unsqueeze(1)
29
+
30
+
31
+ class ProjectReadout(nn.Module):
32
+ def __init__(self, in_features, start_index=1):
33
+ super(ProjectReadout, self).__init__()
34
+ self.start_index = start_index
35
+
36
+ self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
37
+
38
+ def forward(self, x):
39
+ readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
40
+ features = torch.cat((x[:, self.start_index :], readout), -1)
41
+
42
+ return self.project(features)
43
+
44
+
45
+ class Transpose(nn.Module):
46
+ def __init__(self, dim0, dim1):
47
+ super(Transpose, self).__init__()
48
+ self.dim0 = dim0
49
+ self.dim1 = dim1
50
+
51
+ def forward(self, x):
52
+ x = x.transpose(self.dim0, self.dim1)
53
+ return x
54
+
55
+
56
+ def forward_vit(pretrained, x):
57
+ b, c, h, w = x.shape
58
+
59
+ glob = pretrained.model.forward_flex(x)
60
+
61
+ layer_1 = pretrained.activations["1"]
62
+ layer_2 = pretrained.activations["2"]
63
+ layer_3 = pretrained.activations["3"]
64
+ layer_4 = pretrained.activations["4"]
65
+
66
+ layer_1 = pretrained.act_postprocess1[0:2](layer_1)
67
+ layer_2 = pretrained.act_postprocess2[0:2](layer_2)
68
+ layer_3 = pretrained.act_postprocess3[0:2](layer_3)
69
+ layer_4 = pretrained.act_postprocess4[0:2](layer_4)
70
+
71
+ unflatten = nn.Sequential(
72
+ nn.Unflatten(
73
+ 2,
74
+ torch.Size(
75
+ [
76
+ h // pretrained.model.patch_size[1],
77
+ w // pretrained.model.patch_size[0],
78
+ ]
79
+ ),
80
+ )
81
+ )
82
+
83
+ if layer_1.ndim == 3:
84
+ layer_1 = unflatten(layer_1)
85
+ if layer_2.ndim == 3:
86
+ layer_2 = unflatten(layer_2)
87
+ if layer_3.ndim == 3:
88
+ layer_3 = unflatten(layer_3)
89
+ if layer_4.ndim == 3:
90
+ layer_4 = unflatten(layer_4)
91
+
92
+ layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
93
+ layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
94
+ layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
95
+ layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
96
+
97
+ return layer_1, layer_2, layer_3, layer_4
98
+
99
+
100
+ def _resize_pos_embed(self, posemb, gs_h, gs_w):
101
+ posemb_tok, posemb_grid = (
102
+ posemb[:, : self.start_index],
103
+ posemb[0, self.start_index :],
104
+ )
105
+
106
+ gs_old = int(math.sqrt(len(posemb_grid)))
107
+
108
+ posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
109
+ posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
110
+ posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
111
+
112
+ posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
113
+
114
+ return posemb
115
+
116
+
117
+ def forward_flex(self, x):
118
+ b, c, h, w = x.shape
119
+
120
+ pos_embed = self._resize_pos_embed(
121
+ self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
122
+ )
123
+
124
+ B = x.shape[0]
125
+
126
+ if hasattr(self.patch_embed, "backbone"):
127
+ x = self.patch_embed.backbone(x)
128
+ if isinstance(x, (list, tuple)):
129
+ x = x[-1] # last feature if backbone outputs list/tuple of features
130
+
131
+ x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
132
+
133
+ if getattr(self, "dist_token", None) is not None:
134
+ cls_tokens = self.cls_token.expand(
135
+ B, -1, -1
136
+ ) # stole cls_tokens impl from Phil Wang, thanks
137
+ dist_token = self.dist_token.expand(B, -1, -1)
138
+ x = torch.cat((cls_tokens, dist_token, x), dim=1)
139
+ else:
140
+ cls_tokens = self.cls_token.expand(
141
+ B, -1, -1
142
+ ) # stole cls_tokens impl from Phil Wang, thanks
143
+ x = torch.cat((cls_tokens, x), dim=1)
144
+
145
+ x = x + pos_embed
146
+ x = self.pos_drop(x)
147
+
148
+ for blk in self.blocks:
149
+ x = blk(x)
150
+
151
+ x = self.norm(x)
152
+
153
+ return x
154
+
155
+
156
+ activations = {}
157
+
158
+
159
+ def get_activation(name):
160
+ def hook(model, input, output):
161
+ activations[name] = output
162
+
163
+ return hook
164
+
165
+
166
+ def get_readout_oper(vit_features, features, use_readout, start_index=1):
167
+ if use_readout == "ignore":
168
+ readout_oper = [Slice(start_index)] * len(features)
169
+ elif use_readout == "add":
170
+ readout_oper = [AddReadout(start_index)] * len(features)
171
+ elif use_readout == "project":
172
+ readout_oper = [
173
+ ProjectReadout(vit_features, start_index) for out_feat in features
174
+ ]
175
+ else:
176
+ assert (
177
+ False
178
+ ), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
179
+
180
+ return readout_oper
181
+
182
+
183
+ def _make_vit_b16_backbone(
184
+ model,
185
+ features=[96, 192, 384, 768],
186
+ size=[384, 384],
187
+ hooks=[2, 5, 8, 11],
188
+ vit_features=768,
189
+ use_readout="ignore",
190
+ start_index=1,
191
+ ):
192
+ pretrained = nn.Module()
193
+
194
+ pretrained.model = model
195
+ pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
196
+ pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
197
+ pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
198
+ pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
199
+
200
+ pretrained.activations = activations
201
+
202
+ readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
203
+
204
+ # 32, 48, 136, 384
205
+ pretrained.act_postprocess1 = nn.Sequential(
206
+ readout_oper[0],
207
+ Transpose(1, 2),
208
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
209
+ nn.Conv2d(
210
+ in_channels=vit_features,
211
+ out_channels=features[0],
212
+ kernel_size=1,
213
+ stride=1,
214
+ padding=0,
215
+ ),
216
+ nn.ConvTranspose2d(
217
+ in_channels=features[0],
218
+ out_channels=features[0],
219
+ kernel_size=4,
220
+ stride=4,
221
+ padding=0,
222
+ bias=True,
223
+ dilation=1,
224
+ groups=1,
225
+ ),
226
+ )
227
+
228
+ pretrained.act_postprocess2 = nn.Sequential(
229
+ readout_oper[1],
230
+ Transpose(1, 2),
231
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
232
+ nn.Conv2d(
233
+ in_channels=vit_features,
234
+ out_channels=features[1],
235
+ kernel_size=1,
236
+ stride=1,
237
+ padding=0,
238
+ ),
239
+ nn.ConvTranspose2d(
240
+ in_channels=features[1],
241
+ out_channels=features[1],
242
+ kernel_size=2,
243
+ stride=2,
244
+ padding=0,
245
+ bias=True,
246
+ dilation=1,
247
+ groups=1,
248
+ ),
249
+ )
250
+
251
+ pretrained.act_postprocess3 = nn.Sequential(
252
+ readout_oper[2],
253
+ Transpose(1, 2),
254
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
255
+ nn.Conv2d(
256
+ in_channels=vit_features,
257
+ out_channels=features[2],
258
+ kernel_size=1,
259
+ stride=1,
260
+ padding=0,
261
+ ),
262
+ )
263
+
264
+ pretrained.act_postprocess4 = nn.Sequential(
265
+ readout_oper[3],
266
+ Transpose(1, 2),
267
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
268
+ nn.Conv2d(
269
+ in_channels=vit_features,
270
+ out_channels=features[3],
271
+ kernel_size=1,
272
+ stride=1,
273
+ padding=0,
274
+ ),
275
+ nn.Conv2d(
276
+ in_channels=features[3],
277
+ out_channels=features[3],
278
+ kernel_size=3,
279
+ stride=2,
280
+ padding=1,
281
+ ),
282
+ )
283
+
284
+ pretrained.model.start_index = start_index
285
+ pretrained.model.patch_size = [16, 16]
286
+
287
+ # We inject this function into the VisionTransformer instances so that
288
+ # we can use it with interpolated position embeddings without modifying the library source.
289
+ pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
290
+ pretrained.model._resize_pos_embed = types.MethodType(
291
+ _resize_pos_embed, pretrained.model
292
+ )
293
+
294
+ return pretrained
295
+
296
+
297
+ def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
298
+ model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
299
+
300
+ hooks = [5, 11, 17, 23] if hooks == None else hooks
301
+ return _make_vit_b16_backbone(
302
+ model,
303
+ features=[256, 512, 1024, 1024],
304
+ hooks=hooks,
305
+ vit_features=1024,
306
+ use_readout=use_readout,
307
+ )
308
+
309
+
310
+ def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
311
+ model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
312
+
313
+ hooks = [2, 5, 8, 11] if hooks == None else hooks
314
+ return _make_vit_b16_backbone(
315
+ model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
316
+ )
317
+
318
+
319
+ def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
320
+ model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
321
+
322
+ hooks = [2, 5, 8, 11] if hooks == None else hooks
323
+ return _make_vit_b16_backbone(
324
+ model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
325
+ )
326
+
327
+
328
+ def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
329
+ model = timm.create_model(
330
+ "vit_deit_base_distilled_patch16_384", pretrained=pretrained
331
+ )
332
+
333
+ hooks = [2, 5, 8, 11] if hooks == None else hooks
334
+ return _make_vit_b16_backbone(
335
+ model,
336
+ features=[96, 192, 384, 768],
337
+ hooks=hooks,
338
+ use_readout=use_readout,
339
+ start_index=2,
340
+ )
341
+
342
+
343
+ def _make_vit_b_rn50_backbone(
344
+ model,
345
+ features=[256, 512, 768, 768],
346
+ size=[384, 384],
347
+ hooks=[0, 1, 8, 11],
348
+ vit_features=768,
349
+ use_vit_only=False,
350
+ use_readout="ignore",
351
+ start_index=1,
352
+ ):
353
+ pretrained = nn.Module()
354
+
355
+ pretrained.model = model
356
+
357
+ if use_vit_only == True:
358
+ pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
359
+ pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
360
+ else:
361
+ pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
362
+ get_activation("1")
363
+ )
364
+ pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
365
+ get_activation("2")
366
+ )
367
+
368
+ pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
369
+ pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
370
+
371
+ pretrained.activations = activations
372
+
373
+ readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
374
+
375
+ if use_vit_only == True:
376
+ pretrained.act_postprocess1 = nn.Sequential(
377
+ readout_oper[0],
378
+ Transpose(1, 2),
379
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
380
+ nn.Conv2d(
381
+ in_channels=vit_features,
382
+ out_channels=features[0],
383
+ kernel_size=1,
384
+ stride=1,
385
+ padding=0,
386
+ ),
387
+ nn.ConvTranspose2d(
388
+ in_channels=features[0],
389
+ out_channels=features[0],
390
+ kernel_size=4,
391
+ stride=4,
392
+ padding=0,
393
+ bias=True,
394
+ dilation=1,
395
+ groups=1,
396
+ ),
397
+ )
398
+
399
+ pretrained.act_postprocess2 = nn.Sequential(
400
+ readout_oper[1],
401
+ Transpose(1, 2),
402
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
403
+ nn.Conv2d(
404
+ in_channels=vit_features,
405
+ out_channels=features[1],
406
+ kernel_size=1,
407
+ stride=1,
408
+ padding=0,
409
+ ),
410
+ nn.ConvTranspose2d(
411
+ in_channels=features[1],
412
+ out_channels=features[1],
413
+ kernel_size=2,
414
+ stride=2,
415
+ padding=0,
416
+ bias=True,
417
+ dilation=1,
418
+ groups=1,
419
+ ),
420
+ )
421
+ else:
422
+ pretrained.act_postprocess1 = nn.Sequential(
423
+ nn.Identity(), nn.Identity(), nn.Identity()
424
+ )
425
+ pretrained.act_postprocess2 = nn.Sequential(
426
+ nn.Identity(), nn.Identity(), nn.Identity()
427
+ )
428
+
429
+ pretrained.act_postprocess3 = nn.Sequential(
430
+ readout_oper[2],
431
+ Transpose(1, 2),
432
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
433
+ nn.Conv2d(
434
+ in_channels=vit_features,
435
+ out_channels=features[2],
436
+ kernel_size=1,
437
+ stride=1,
438
+ padding=0,
439
+ ),
440
+ )
441
+
442
+ pretrained.act_postprocess4 = nn.Sequential(
443
+ readout_oper[3],
444
+ Transpose(1, 2),
445
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
446
+ nn.Conv2d(
447
+ in_channels=vit_features,
448
+ out_channels=features[3],
449
+ kernel_size=1,
450
+ stride=1,
451
+ padding=0,
452
+ ),
453
+ nn.Conv2d(
454
+ in_channels=features[3],
455
+ out_channels=features[3],
456
+ kernel_size=3,
457
+ stride=2,
458
+ padding=1,
459
+ ),
460
+ )
461
+
462
+ pretrained.model.start_index = start_index
463
+ pretrained.model.patch_size = [16, 16]
464
+
465
+ # We inject this function into the VisionTransformer instances so that
466
+ # we can use it with interpolated position embeddings without modifying the library source.
467
+ pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
468
+
469
+ # We inject this function into the VisionTransformer instances so that
470
+ # we can use it with interpolated position embeddings without modifying the library source.
471
+ pretrained.model._resize_pos_embed = types.MethodType(
472
+ _resize_pos_embed, pretrained.model
473
+ )
474
+
475
+ return pretrained
476
+
477
+
478
+ def _make_pretrained_vitb_rn50_384(
479
+ pretrained, use_readout="ignore", hooks=None, use_vit_only=False
480
+ ):
481
+ model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
482
+
483
+ hooks = [0, 1, 8, 11] if hooks == None else hooks
484
+ return _make_vit_b_rn50_backbone(
485
+ model,
486
+ features=[256, 512, 768, 768],
487
+ size=[384, 384],
488
+ hooks=hooks,
489
+ use_vit_only=use_vit_only,
490
+ use_readout=use_readout,
491
+ )