feishen29's picture
Upload 179 files
29d49a9 verified
raw
history blame
6.26 kB
"""
This file contains a Processor that can be used to process images with controlnet aux processors
"""
import io
import logging
from typing import Dict, Optional, Union
from PIL import Image
from controlnet_aux import (CannyDetector, ContentShuffleDetector, HEDdetector,
LeresDetector, LineartAnimeDetector,
LineartDetector, MediapipeFaceDetector,
MidasDetector, MLSDdetector, NormalBaeDetector,
OpenposeDetector, PidiNetDetector, ZoeDetector,
DWposeDetector)
LOGGER = logging.getLogger(__name__)
MODELS = {
# checkpoint models
'scribble_hed': {'class': HEDdetector, 'checkpoint': True},
'softedge_hed': {'class': HEDdetector, 'checkpoint': True},
'scribble_hedsafe': {'class': HEDdetector, 'checkpoint': True},
'softedge_hedsafe': {'class': HEDdetector, 'checkpoint': True},
'depth_midas': {'class': MidasDetector, 'checkpoint': True},
'mlsd': {'class': MLSDdetector, 'checkpoint': True},
'openpose': {'class': OpenposeDetector, 'checkpoint': True},
'openpose_face': {'class': OpenposeDetector, 'checkpoint': True},
'openpose_faceonly': {'class': OpenposeDetector, 'checkpoint': True},
'openpose_full': {'class': OpenposeDetector, 'checkpoint': True},
'openpose_hand': {'class': OpenposeDetector, 'checkpoint': True},
'dwpose': {'class': DWposeDetector, 'checkpoint': True},
'scribble_pidinet': {'class': PidiNetDetector, 'checkpoint': True},
'softedge_pidinet': {'class': PidiNetDetector, 'checkpoint': True},
'scribble_pidsafe': {'class': PidiNetDetector, 'checkpoint': True},
'softedge_pidsafe': {'class': PidiNetDetector, 'checkpoint': True},
'normal_bae': {'class': NormalBaeDetector, 'checkpoint': True},
'lineart_coarse': {'class': LineartDetector, 'checkpoint': True},
'lineart_realistic': {'class': LineartDetector, 'checkpoint': True},
'lineart_anime': {'class': LineartAnimeDetector, 'checkpoint': True},
'depth_zoe': {'class': ZoeDetector, 'checkpoint': True},
'depth_leres': {'class': LeresDetector, 'checkpoint': True},
'depth_leres++': {'class': LeresDetector, 'checkpoint': True},
# instantiate
'shuffle': {'class': ContentShuffleDetector, 'checkpoint': False},
'mediapipe_face': {'class': MediapipeFaceDetector, 'checkpoint': False},
'canny': {'class': CannyDetector, 'checkpoint': False},
}
MODEL_PARAMS = {
'scribble_hed': {'scribble': True},
'softedge_hed': {'scribble': False},
'scribble_hedsafe': {'scribble': True, 'safe': True},
'softedge_hedsafe': {'scribble': False, 'safe': True},
'depth_midas': {},
'mlsd': {},
'openpose': {'include_body': True, 'include_hand': False, 'include_face': False},
'openpose_face': {'include_body': True, 'include_hand': False, 'include_face': True},
'openpose_faceonly': {'include_body': False, 'include_hand': False, 'include_face': True},
'openpose_full': {'include_body': True, 'include_hand': True, 'include_face': True},
'openpose_hand': {'include_body': False, 'include_hand': True, 'include_face': False},
'dwpose': {},
'scribble_pidinet': {'safe': False, 'scribble': True},
'softedge_pidinet': {'safe': False, 'scribble': False},
'scribble_pidsafe': {'safe': True, 'scribble': True},
'softedge_pidsafe': {'safe': True, 'scribble': False},
'normal_bae': {},
'lineart_realistic': {'coarse': False},
'lineart_coarse': {'coarse': True},
'lineart_anime': {},
'canny': {},
'shuffle': {},
'depth_zoe': {},
'depth_leres': {'boost': False},
'depth_leres++': {'boost': True},
'mediapipe_face': {},
}
CHOICES = f"Choices for the processor are {list(MODELS.keys())}"
class Processor:
def __init__(self, processor_id: str, params: Optional[Dict] = None) -> None:
"""Processor that can be used to process images with controlnet aux processors
Args:
processor_id (str): processor name, options are 'hed, midas, mlsd, openpose,
pidinet, normalbae, lineart, lineart_coarse, lineart_anime,
canny, content_shuffle, zoe, mediapipe_face
params (Optional[Dict]): parameters for the processor
"""
LOGGER.info(f"Loading {processor_id}")
if processor_id not in MODELS:
raise ValueError(f"{processor_id} is not a valid processor id. Please make sure to choose one of {', '.join(MODELS.keys())}")
self.processor_id = processor_id
self.processor = self.load_processor(self.processor_id)
# load default params
self.params = MODEL_PARAMS[self.processor_id]
# update with user params
if params:
self.params.update(params)
def load_processor(self, processor_id: str) -> 'Processor':
"""Load controlnet aux processors
Args:
processor_id (str): processor name
Returns:
Processor: controlnet aux processor
"""
processor = MODELS[processor_id]['class']
# check if the proecssor is a checkpoint model
if MODELS[processor_id]['checkpoint']:
processor = processor.from_pretrained("lllyasviel/Annotators")
else:
processor = processor()
return processor
def __call__(self, image: Union[Image.Image, bytes],
to_pil: bool = True) -> Union[Image.Image, bytes]:
"""processes an image with a controlnet aux processor
Args:
image (Union[Image.Image, bytes]): input image in bytes or PIL Image
to_pil (bool): whether to return bytes or PIL Image
Returns:
Union[Image.Image, bytes]: processed image in bytes or PIL Image
"""
# check if bytes or PIL Image
if isinstance(image, bytes):
image = Image.open(io.BytesIO(image)).convert("RGB")
processed_image = self.processor(image, **self.params)
if to_pil:
return processed_image
else:
output_bytes = io.BytesIO()
processed_image.save(output_bytes, format='JPEG')
return output_bytes.getvalue()