TalkSHOW / scripts /test_vq.py
feifeifeiliu's picture
first version
865fd8a
import os
import sys
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
sys.path.append(os.getcwd())
from tqdm import tqdm
from transformers import Wav2Vec2Processor
from evaluation.metrics import LVD
import numpy as np
import smplx as smpl
from data_utils.lower_body import part2full, poses2pred, c_index_3d
from nets import *
from nets.utils import get_path, get_dpath
from trainer.options import parse_args
from data_utils import torch_data
from trainer.config import load_JsonConfig
import torch
from torch.utils import data
from data_utils.get_j import to3d, get_joints
from scripts.test_body import init_model, init_dataloader
def test(test_loader, generator, config):
print('start testing')
loss_dict = {}
B = 1
with torch.no_grad():
count = 0
for bat in tqdm(test_loader, desc="Testing......"):
count = count + 1
aud, poses, exp = bat['aud_feat'].to('cuda').to(torch.float32), bat['poses'].to('cuda').to(torch.float32), \
bat['expression'].to('cuda').to(torch.float32)
id = bat['speaker'].to('cuda') - 20
betas = bat['betas'][0].to('cuda').to(torch.float64)
poses = torch.cat([poses, exp], dim=-2).transpose(-1, -2).squeeze()
poses = to3d(poses, config).unsqueeze(dim=0).transpose(1, 2)
# poses = poses[:, c_index_3d, :]
cur_wav_file = bat['aud_file'][0]
pred = generator.infer_on_audio(cur_wav_file,
initial_pose=poses,
id=id,
fps=30,
B=B
)
pred = torch.tensor(pred, device='cuda')
bat_loss_dict = {'capacity': (poses[:, c_index_3d, :pred.shape[0]].transpose(1,2) - pred).abs().sum(-1).mean()}
if loss_dict: # 非空
for key in list(bat_loss_dict.keys()):
loss_dict[key] += bat_loss_dict[key]
else:
for key in list(bat_loss_dict.keys()):
loss_dict[key] = bat_loss_dict[key]
for key in loss_dict.keys():
loss_dict[key] = loss_dict[key] / count
print(key + '=' + str(loss_dict[key].item()))
def main():
parser = parse_args()
args = parser.parse_args()
device = torch.device(args.gpu)
torch.cuda.set_device(device)
config = load_JsonConfig(args.config_file)
os.environ['smplx_npz_path'] = config.smplx_npz_path
os.environ['extra_joint_path'] = config.extra_joint_path
os.environ['j14_regressor_path'] = config.j14_regressor_path
print('init dataloader...')
test_set, test_loader, norm_stats = init_dataloader(config.Data.data_root, args.speakers, args, config)
print('init model...')
model_name = 's2g_body_vq'
model_type = 'n_com_8192'
model_path = get_path(model_name, model_type)
generator = init_model(model_name, model_path, args, config)
test(test_loader, generator, config)
if __name__ == '__main__':
main()