TalkSHOW / nets /spg /s2g_face.py
feifeifeiliu's picture
first version
865fd8a
'''
not exactly the same as the official repo but the results are good
'''
import sys
import os
from transformers import Wav2Vec2Processor
from .wav2vec import Wav2Vec2Model
from torchaudio.sox_effects import apply_effects_tensor
sys.path.append(os.getcwd())
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio as ta
import math
from nets.layers import SeqEncoder1D, SeqTranslator1D, ConvNormRelu
""" from https://github.com/ai4r/Gesture-Generation-from-Trimodal-Context.git """
def audio_chunking(audio: torch.Tensor, frame_rate: int = 30, chunk_size: int = 16000):
"""
:param audio: 1 x T tensor containing a 16kHz audio signal
:param frame_rate: frame rate for video (we need one audio chunk per video frame)
:param chunk_size: number of audio samples per chunk
:return: num_chunks x chunk_size tensor containing sliced audio
"""
samples_per_frame = 16000 // frame_rate
padding = (chunk_size - samples_per_frame) // 2
audio = torch.nn.functional.pad(audio.unsqueeze(0), pad=[padding, padding]).squeeze(0)
anchor_points = list(range(chunk_size//2, audio.shape[-1]-chunk_size//2, samples_per_frame))
audio = torch.cat([audio[:, i-chunk_size//2:i+chunk_size//2] for i in anchor_points], dim=0)
return audio
class MeshtalkEncoder(nn.Module):
def __init__(self, latent_dim: int = 128, model_name: str = 'audio_encoder'):
"""
:param latent_dim: size of the latent audio embedding
:param model_name: name of the model, used to load and save the model
"""
super().__init__()
self.melspec = ta.transforms.MelSpectrogram(
sample_rate=16000, n_fft=2048, win_length=800, hop_length=160, n_mels=80
)
conv_len = 5
self.convert_dimensions = torch.nn.Conv1d(80, 128, kernel_size=conv_len)
self.weights_init(self.convert_dimensions)
self.receptive_field = conv_len
convs = []
for i in range(6):
dilation = 2 * (i % 3 + 1)
self.receptive_field += (conv_len - 1) * dilation
convs += [torch.nn.Conv1d(128, 128, kernel_size=conv_len, dilation=dilation)]
self.weights_init(convs[-1])
self.convs = torch.nn.ModuleList(convs)
self.code = torch.nn.Linear(128, latent_dim)
self.apply(lambda x: self.weights_init(x))
def weights_init(self, m):
if isinstance(m, torch.nn.Conv1d):
torch.nn.init.xavier_uniform_(m.weight)
try:
torch.nn.init.constant_(m.bias, .01)
except:
pass
def forward(self, audio: torch.Tensor):
"""
:param audio: B x T x 16000 Tensor containing 1 sec of audio centered around the current time frame
:return: code: B x T x latent_dim Tensor containing a latent audio code/embedding
"""
B, T = audio.shape[0], audio.shape[1]
x = self.melspec(audio).squeeze(1)
x = torch.log(x.clamp(min=1e-10, max=None))
if T == 1:
x = x.unsqueeze(1)
# Convert to the right dimensionality
x = x.view(-1, x.shape[2], x.shape[3])
x = F.leaky_relu(self.convert_dimensions(x), .2)
# Process stacks
for conv in self.convs:
x_ = F.leaky_relu(conv(x), .2)
if self.training:
x_ = F.dropout(x_, .2)
l = (x.shape[2] - x_.shape[2]) // 2
x = (x[:, :, l:-l] + x_) / 2
x = torch.mean(x, dim=-1)
x = x.view(B, T, x.shape[-1])
x = self.code(x)
return {"code": x}
class AudioEncoder(nn.Module):
def __init__(self, in_dim, out_dim, identity=False, num_classes=0):
super().__init__()
self.identity = identity
if self.identity:
in_dim = in_dim + 64
self.id_mlp = nn.Conv1d(num_classes, 64, 1, 1)
self.first_net = SeqTranslator1D(in_dim, out_dim,
min_layers_num=3,
residual=True,
norm='ln'
)
self.grus = nn.GRU(out_dim, out_dim, 1, batch_first=True)
self.dropout = nn.Dropout(0.1)
# self.att = nn.MultiheadAttention(out_dim, 4, dropout=0.1, batch_first=True)
def forward(self, spectrogram, pre_state=None, id=None, time_steps=None):
spectrogram = spectrogram
spectrogram = self.dropout(spectrogram)
if self.identity:
id = id.reshape(id.shape[0], -1, 1).repeat(1, 1, spectrogram.shape[2]).to(torch.float32)
id = self.id_mlp(id)
spectrogram = torch.cat([spectrogram, id], dim=1)
x1 = self.first_net(spectrogram)# .permute(0, 2, 1)
if time_steps is not None:
x1 = F.interpolate(x1, size=time_steps, align_corners=False, mode='linear')
# x1, _ = self.att(x1, x1, x1)
# x1, hidden_state = self.grus(x1)
# x1 = x1.permute(0, 2, 1)
hidden_state=None
return x1, hidden_state
class Generator(nn.Module):
def __init__(self,
n_poses,
each_dim: list,
dim_list: list,
training=False,
device=None,
identity=True,
num_classes=0,
):
super().__init__()
self.training = training
self.device = device
self.gen_length = n_poses
self.identity = identity
norm = 'ln'
in_dim = 256
out_dim = 256
self.encoder_choice = 'faceformer'
if self.encoder_choice == 'meshtalk':
self.audio_encoder = MeshtalkEncoder(latent_dim=in_dim)
elif self.encoder_choice == 'faceformer':
# wav2vec 2.0 weights initialization
self.audio_encoder = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h") # "vitouphy/wav2vec2-xls-r-300m-phoneme""facebook/wav2vec2-base-960h"
self.audio_encoder.feature_extractor._freeze_parameters()
self.audio_feature_map = nn.Linear(768, in_dim)
else:
self.audio_encoder = AudioEncoder(in_dim=64, out_dim=out_dim)
self.audio_middle = AudioEncoder(in_dim, out_dim, identity, num_classes)
self.dim_list = dim_list
self.decoder = nn.ModuleList()
self.final_out = nn.ModuleList()
self.decoder.append(nn.Sequential(
ConvNormRelu(out_dim, 64, norm=norm),
ConvNormRelu(64, 64, norm=norm),
ConvNormRelu(64, 64, norm=norm),
))
self.final_out.append(nn.Conv1d(64, each_dim[0], 1, 1))
self.decoder.append(nn.Sequential(
ConvNormRelu(out_dim, out_dim, norm=norm),
ConvNormRelu(out_dim, out_dim, norm=norm),
ConvNormRelu(out_dim, out_dim, norm=norm),
))
self.final_out.append(nn.Conv1d(out_dim, each_dim[3], 1, 1))
def forward(self, in_spec, gt_poses=None, id=None, pre_state=None, time_steps=None):
if self.training:
time_steps = gt_poses.shape[1]
# vector, hidden_state = self.audio_encoder(in_spec, pre_state, time_steps=time_steps)
if self.encoder_choice == 'meshtalk':
in_spec = audio_chunking(in_spec.squeeze(-1), frame_rate=30, chunk_size=16000)
feature = self.audio_encoder(in_spec.unsqueeze(0))["code"].transpose(1, 2)
elif self.encoder_choice == 'faceformer':
hidden_states = self.audio_encoder(in_spec.reshape(in_spec.shape[0], -1), frame_num=time_steps).last_hidden_state
feature = self.audio_feature_map(hidden_states).transpose(1, 2)
else:
feature, hidden_state = self.audio_encoder(in_spec, pre_state, time_steps=time_steps)
# hidden_states = in_spec
feature, _ = self.audio_middle(feature, id=id)
out = []
for i in range(self.decoder.__len__()):
mid = self.decoder[i](feature)
mid = self.final_out[i](mid)
out.append(mid)
out = torch.cat(out, dim=1)
out = out.transpose(1, 2)
return out, None