TalkSHOW / data_utils /utils.py
feifeifeiliu's picture
Upload 25 files
9b6fdf7
raw
history blame
10.8 kB
import numpy as np
# import librosa #has to do this cause librosa is not supported on my server
from scipy.io import wavfile
from scipy import signal
import librosa
import torch
import torchaudio as ta
import torchaudio.functional as ta_F
import torchaudio.transforms as ta_T
# import pyloudnorm as pyln
def load_wav_old(audio_fn, sr = 16000):
sample_rate, sig = wavfile.read(audio_fn)
if sample_rate != sr:
result = int((sig.shape[0]) / sample_rate * sr)
x_resampled = signal.resample(sig, result)
x_resampled = x_resampled.astype(np.float64)
return x_resampled, sr
sig = sig / (2**15)
return sig, sample_rate
def get_mfcc(audio_fn, eps=1e-6, fps=25, smlpx=False, sr=16000, n_mfcc=64, win_size=None):
y, sr = librosa.load(audio_fn, sr=sr, mono=True)
if win_size is None:
hop_len=int(sr / fps)
else:
hop_len=int(sr / win_size)
n_fft=2048
C = librosa.feature.mfcc(
y = y,
sr = sr,
n_mfcc = n_mfcc,
hop_length = hop_len,
n_fft = n_fft
)
if C.shape[0] == n_mfcc:
C = C.transpose(1, 0)
return C
def get_melspec(audio_fn, eps=1e-6, fps = 25, sr=16000, n_mels=64):
raise NotImplementedError
'''
# y, sr = load_wav(audio_fn=audio_fn, sr=sr)
# hop_len = int(sr / fps)
# n_fft = 2048
# C = librosa.feature.melspectrogram(
# y = y,
# sr = sr,
# n_fft=n_fft,
# hop_length=hop_len,
# n_mels = n_mels,
# fmin=0,
# fmax=8000)
# mask = (C == 0).astype(np.float)
# C = mask * eps + (1-mask) * C
# C = np.log(C)
# #wierd error may occur here
# assert not (np.isnan(C).any()), audio_fn
# if C.shape[0] == n_mels:
# C = C.transpose(1, 0)
# return C
'''
def extract_mfcc(audio,sample_rate=16000):
# mfcc = zip(*python_speech_features.mfcc(audio,sample_rate, numcep=64, nfilt=64, nfft=2048, winstep=0.04))
# mfcc = np.stack([np.array(i) for i in mfcc])
return None
def get_mfcc_psf(audio_fn, eps=1e-6, fps=25, smlpx=False, sr=16000, n_mfcc=64, win_size=None):
y, sr = load_wav_old(audio_fn, sr=sr)
if y.shape.__len__() > 1:
y = (y[:,0]+y[:,1])/2
if win_size is None:
hop_len=int(sr / fps)
else:
hop_len=int(sr/ win_size)
n_fft=2048
#hard coded for 25 fps
# if not smlpx:
# C = python_speech_features.mfcc(y, sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=0.04)
# else:
# C = python_speech_features.mfcc(y, sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=1.01/15)
# if C.shape[0] == n_mfcc:
# C = C.transpose(1, 0)
return None
def get_mfcc_psf_min(audio_fn, eps=1e-6, fps=25, smlpx=False, sr=16000, n_mfcc=64, win_size=None):
y, sr = load_wav_old(audio_fn, sr=sr)
if y.shape.__len__() > 1:
y = (y[:, 0] + y[:, 1]) / 2
n_fft = 2048
slice_len = 22000 * 5
slice = y.size // slice_len
C = []
# for i in range(slice):
# if i != (slice - 1):
# feat = python_speech_features.mfcc(y[i*slice_len:(i+1)*slice_len], sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=1.01 / 15)
# else:
# feat = python_speech_features.mfcc(y[i * slice_len:], sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=1.01 / 15)
#
# C.append(feat)
return C
def audio_chunking(audio: torch.Tensor, frame_rate: int = 30, chunk_size: int = 16000):
"""
:param audio: 1 x T tensor containing a 16kHz audio signal
:param frame_rate: frame rate for video (we need one audio chunk per video frame)
:param chunk_size: number of audio samples per chunk
:return: num_chunks x chunk_size tensor containing sliced audio
"""
samples_per_frame = chunk_size // frame_rate
padding = (chunk_size - samples_per_frame) // 2
audio = torch.nn.functional.pad(audio.unsqueeze(0), pad=[padding, padding]).squeeze(0)
anchor_points = list(range(chunk_size//2, audio.shape[-1]-chunk_size//2, samples_per_frame))
audio = torch.cat([audio[:, i-chunk_size//2:i+chunk_size//2] for i in anchor_points], dim=0)
return audio
def get_mfcc_ta(audio_fn, eps=1e-6, fps=15, smlpx=False, sr=16000, n_mfcc=64, win_size=None, type='mfcc', am=None, am_sr=None, encoder_choice='mfcc'):
if am is None:
sr_0, audio = audio_fn
audio = torch.tensor(audio)/32767
if len(audio.shape) == 1:
audio.unsqueeze_(dim=0)
elif audio.shape[1] == 1 or audio.shape[1] == 2:
audio.transpose_(0, 1)
if sr != sr_0:
audio = ta.transforms.Resample(sr_0, sr)(audio)
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
n_fft = 2048
if fps == 15:
hop_length = 1467
elif fps == 30:
hop_length = 734
win_length = hop_length * 2
n_mels = 256
n_mfcc = 64
if type == 'mfcc':
mfcc_transform = ta_T.MFCC(
sample_rate=sr,
n_mfcc=n_mfcc,
melkwargs={
"n_fft": n_fft,
"n_mels": n_mels,
# "win_length": win_length,
"hop_length": hop_length,
"mel_scale": "htk",
},
)
audio_ft = mfcc_transform(audio).squeeze(dim=0).transpose(0,1).numpy()
elif type == 'mel':
# audio = 0.01 * audio / torch.mean(torch.abs(audio))
mel_transform = ta_T.MelSpectrogram(
sample_rate=sr, n_fft=n_fft, win_length=None, hop_length=hop_length, n_mels=n_mels
)
audio_ft = mel_transform(audio).squeeze(0).transpose(0,1).numpy()
# audio_ft = torch.log(audio_ft.clamp(min=1e-10, max=None)).transpose(0,1).numpy()
elif type == 'mel_mul':
audio = 0.01 * audio / torch.mean(torch.abs(audio))
audio = audio_chunking(audio, frame_rate=fps, chunk_size=sr)
mel_transform = ta_T.MelSpectrogram(
sample_rate=sr, n_fft=n_fft, win_length=int(sr/20), hop_length=int(sr/100), n_mels=n_mels
)
audio_ft = mel_transform(audio).squeeze(1)
audio_ft = torch.log(audio_ft.clamp(min=1e-10, max=None)).numpy()
else:
sampling_rate, speech_array = audio_fn
speech_array = torch.tensor(speech_array) / 32767
if len(speech_array.shape) == 1:
speech_array.unsqueeze_(0)
elif speech_array.shape[1] == 1 or speech_array.shape[1] == 2:
speech_array.transpose_(0, 1)
if sr != sampling_rate:
speech_array = ta.transforms.Resample(sampling_rate, sr)(speech_array)
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
speech_array = speech_array.numpy()
if encoder_choice == 'faceformer':
# audio_ft = np.squeeze(am(speech_array, sampling_rate=16000).input_values).reshape(-1, 1)
audio_ft = speech_array.reshape(-1, 1)
elif encoder_choice == 'meshtalk':
audio_ft = 0.01 * speech_array / np.mean(np.abs(speech_array))
elif encoder_choice == 'onset':
audio_ft = librosa.onset.onset_detect(y=speech_array, sr=16000, units='time').reshape(-1, 1)
else:
audio, sr_0 = ta.load(audio_fn)
if sr != sr_0:
audio = ta.transforms.Resample(sr_0, sr)(audio)
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
n_fft = 2048
if fps == 15:
hop_length = 1467
elif fps == 30:
hop_length = 734
win_length = hop_length * 2
n_mels = 256
n_mfcc = 64
mfcc_transform = ta_T.MFCC(
sample_rate=sr,
n_mfcc=n_mfcc,
melkwargs={
"n_fft": n_fft,
"n_mels": n_mels,
# "win_length": win_length,
"hop_length": hop_length,
"mel_scale": "htk",
},
)
audio_ft = mfcc_transform(audio).squeeze(dim=0).transpose(0, 1).numpy()
return audio_ft
def get_mfcc_sepa(audio_fn, fps=15, sr=16000):
audio, sr_0 = ta.load(audio_fn)
if sr != sr_0:
audio = ta.transforms.Resample(sr_0, sr)(audio)
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
n_fft = 2048
if fps == 15:
hop_length = 1467
elif fps == 30:
hop_length = 734
n_mels = 256
n_mfcc = 64
mfcc_transform = ta_T.MFCC(
sample_rate=sr,
n_mfcc=n_mfcc,
melkwargs={
"n_fft": n_fft,
"n_mels": n_mels,
# "win_length": win_length,
"hop_length": hop_length,
"mel_scale": "htk",
},
)
audio_ft_0 = mfcc_transform(audio[0, :sr*2]).squeeze(dim=0).transpose(0,1).numpy()
audio_ft_1 = mfcc_transform(audio[0, sr*2:]).squeeze(dim=0).transpose(0,1).numpy()
audio_ft = np.concatenate((audio_ft_0, audio_ft_1), axis=0)
return audio_ft, audio_ft_0.shape[0]
def get_mfcc_old(wav_file):
sig, sample_rate = load_wav_old(wav_file)
mfcc = extract_mfcc(sig)
return mfcc
def smooth_geom(geom, mask: torch.Tensor = None, filter_size: int = 9, sigma: float = 2.0):
"""
:param geom: T x V x 3 tensor containing a temporal sequence of length T with V vertices in each frame
:param mask: V-dimensional Tensor containing a mask with vertices to be smoothed
:param filter_size: size of the Gaussian filter
:param sigma: standard deviation of the Gaussian filter
:return: T x V x 3 tensor containing smoothed geometry (i.e., smoothed in the area indicated by the mask)
"""
assert filter_size % 2 == 1, f"filter size must be odd but is {filter_size}"
# Gaussian smoothing (low-pass filtering)
fltr = np.arange(-(filter_size // 2), filter_size // 2 + 1)
fltr = np.exp(-0.5 * fltr ** 2 / sigma ** 2)
fltr = torch.Tensor(fltr) / np.sum(fltr)
# apply fltr
fltr = fltr.view(1, 1, -1).to(device=geom.device)
T, V = geom.shape[1], geom.shape[2]
g = torch.nn.functional.pad(
geom.permute(2, 0, 1).view(V, 1, T),
pad=[filter_size // 2, filter_size // 2], mode='replicate'
)
g = torch.nn.functional.conv1d(g, fltr).view(V, 1, T)
smoothed = g.permute(1, 2, 0).contiguous()
# blend smoothed signal with original signal
if mask is None:
return smoothed
else:
return smoothed * mask[None, :, None] + geom * (-mask[None, :, None] + 1)