Spaces:
Build error
Build error
File size: 10,790 Bytes
865fd8a 9b6fdf7 865fd8a 9b6fdf7 865fd8a 9b6fdf7 865fd8a 9b6fdf7 865fd8a 9b6fdf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import numpy as np
# import librosa #has to do this cause librosa is not supported on my server
from scipy.io import wavfile
from scipy import signal
import librosa
import torch
import torchaudio as ta
import torchaudio.functional as ta_F
import torchaudio.transforms as ta_T
# import pyloudnorm as pyln
def load_wav_old(audio_fn, sr = 16000):
sample_rate, sig = wavfile.read(audio_fn)
if sample_rate != sr:
result = int((sig.shape[0]) / sample_rate * sr)
x_resampled = signal.resample(sig, result)
x_resampled = x_resampled.astype(np.float64)
return x_resampled, sr
sig = sig / (2**15)
return sig, sample_rate
def get_mfcc(audio_fn, eps=1e-6, fps=25, smlpx=False, sr=16000, n_mfcc=64, win_size=None):
y, sr = librosa.load(audio_fn, sr=sr, mono=True)
if win_size is None:
hop_len=int(sr / fps)
else:
hop_len=int(sr / win_size)
n_fft=2048
C = librosa.feature.mfcc(
y = y,
sr = sr,
n_mfcc = n_mfcc,
hop_length = hop_len,
n_fft = n_fft
)
if C.shape[0] == n_mfcc:
C = C.transpose(1, 0)
return C
def get_melspec(audio_fn, eps=1e-6, fps = 25, sr=16000, n_mels=64):
raise NotImplementedError
'''
# y, sr = load_wav(audio_fn=audio_fn, sr=sr)
# hop_len = int(sr / fps)
# n_fft = 2048
# C = librosa.feature.melspectrogram(
# y = y,
# sr = sr,
# n_fft=n_fft,
# hop_length=hop_len,
# n_mels = n_mels,
# fmin=0,
# fmax=8000)
# mask = (C == 0).astype(np.float)
# C = mask * eps + (1-mask) * C
# C = np.log(C)
# #wierd error may occur here
# assert not (np.isnan(C).any()), audio_fn
# if C.shape[0] == n_mels:
# C = C.transpose(1, 0)
# return C
'''
def extract_mfcc(audio,sample_rate=16000):
# mfcc = zip(*python_speech_features.mfcc(audio,sample_rate, numcep=64, nfilt=64, nfft=2048, winstep=0.04))
# mfcc = np.stack([np.array(i) for i in mfcc])
return None
def get_mfcc_psf(audio_fn, eps=1e-6, fps=25, smlpx=False, sr=16000, n_mfcc=64, win_size=None):
y, sr = load_wav_old(audio_fn, sr=sr)
if y.shape.__len__() > 1:
y = (y[:,0]+y[:,1])/2
if win_size is None:
hop_len=int(sr / fps)
else:
hop_len=int(sr/ win_size)
n_fft=2048
#hard coded for 25 fps
# if not smlpx:
# C = python_speech_features.mfcc(y, sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=0.04)
# else:
# C = python_speech_features.mfcc(y, sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=1.01/15)
# if C.shape[0] == n_mfcc:
# C = C.transpose(1, 0)
return None
def get_mfcc_psf_min(audio_fn, eps=1e-6, fps=25, smlpx=False, sr=16000, n_mfcc=64, win_size=None):
y, sr = load_wav_old(audio_fn, sr=sr)
if y.shape.__len__() > 1:
y = (y[:, 0] + y[:, 1]) / 2
n_fft = 2048
slice_len = 22000 * 5
slice = y.size // slice_len
C = []
# for i in range(slice):
# if i != (slice - 1):
# feat = python_speech_features.mfcc(y[i*slice_len:(i+1)*slice_len], sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=1.01 / 15)
# else:
# feat = python_speech_features.mfcc(y[i * slice_len:], sr, numcep=n_mfcc, nfilt=n_mfcc, nfft=n_fft, winstep=1.01 / 15)
#
# C.append(feat)
return C
def audio_chunking(audio: torch.Tensor, frame_rate: int = 30, chunk_size: int = 16000):
"""
:param audio: 1 x T tensor containing a 16kHz audio signal
:param frame_rate: frame rate for video (we need one audio chunk per video frame)
:param chunk_size: number of audio samples per chunk
:return: num_chunks x chunk_size tensor containing sliced audio
"""
samples_per_frame = chunk_size // frame_rate
padding = (chunk_size - samples_per_frame) // 2
audio = torch.nn.functional.pad(audio.unsqueeze(0), pad=[padding, padding]).squeeze(0)
anchor_points = list(range(chunk_size//2, audio.shape[-1]-chunk_size//2, samples_per_frame))
audio = torch.cat([audio[:, i-chunk_size//2:i+chunk_size//2] for i in anchor_points], dim=0)
return audio
def get_mfcc_ta(audio_fn, eps=1e-6, fps=15, smlpx=False, sr=16000, n_mfcc=64, win_size=None, type='mfcc', am=None, am_sr=None, encoder_choice='mfcc'):
if am is None:
sr_0, audio = audio_fn
audio = torch.tensor(audio)/32767
if len(audio.shape) == 1:
audio.unsqueeze_(dim=0)
elif audio.shape[1] == 1 or audio.shape[1] == 2:
audio.transpose_(0, 1)
if sr != sr_0:
audio = ta.transforms.Resample(sr_0, sr)(audio)
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
n_fft = 2048
if fps == 15:
hop_length = 1467
elif fps == 30:
hop_length = 734
win_length = hop_length * 2
n_mels = 256
n_mfcc = 64
if type == 'mfcc':
mfcc_transform = ta_T.MFCC(
sample_rate=sr,
n_mfcc=n_mfcc,
melkwargs={
"n_fft": n_fft,
"n_mels": n_mels,
# "win_length": win_length,
"hop_length": hop_length,
"mel_scale": "htk",
},
)
audio_ft = mfcc_transform(audio).squeeze(dim=0).transpose(0,1).numpy()
elif type == 'mel':
# audio = 0.01 * audio / torch.mean(torch.abs(audio))
mel_transform = ta_T.MelSpectrogram(
sample_rate=sr, n_fft=n_fft, win_length=None, hop_length=hop_length, n_mels=n_mels
)
audio_ft = mel_transform(audio).squeeze(0).transpose(0,1).numpy()
# audio_ft = torch.log(audio_ft.clamp(min=1e-10, max=None)).transpose(0,1).numpy()
elif type == 'mel_mul':
audio = 0.01 * audio / torch.mean(torch.abs(audio))
audio = audio_chunking(audio, frame_rate=fps, chunk_size=sr)
mel_transform = ta_T.MelSpectrogram(
sample_rate=sr, n_fft=n_fft, win_length=int(sr/20), hop_length=int(sr/100), n_mels=n_mels
)
audio_ft = mel_transform(audio).squeeze(1)
audio_ft = torch.log(audio_ft.clamp(min=1e-10, max=None)).numpy()
else:
sampling_rate, speech_array = audio_fn
speech_array = torch.tensor(speech_array) / 32767
if len(speech_array.shape) == 1:
speech_array.unsqueeze_(0)
elif speech_array.shape[1] == 1 or speech_array.shape[1] == 2:
speech_array.transpose_(0, 1)
if sr != sampling_rate:
speech_array = ta.transforms.Resample(sampling_rate, sr)(speech_array)
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
speech_array = speech_array.numpy()
if encoder_choice == 'faceformer':
# audio_ft = np.squeeze(am(speech_array, sampling_rate=16000).input_values).reshape(-1, 1)
audio_ft = speech_array.reshape(-1, 1)
elif encoder_choice == 'meshtalk':
audio_ft = 0.01 * speech_array / np.mean(np.abs(speech_array))
elif encoder_choice == 'onset':
audio_ft = librosa.onset.onset_detect(y=speech_array, sr=16000, units='time').reshape(-1, 1)
else:
audio, sr_0 = ta.load(audio_fn)
if sr != sr_0:
audio = ta.transforms.Resample(sr_0, sr)(audio)
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
n_fft = 2048
if fps == 15:
hop_length = 1467
elif fps == 30:
hop_length = 734
win_length = hop_length * 2
n_mels = 256
n_mfcc = 64
mfcc_transform = ta_T.MFCC(
sample_rate=sr,
n_mfcc=n_mfcc,
melkwargs={
"n_fft": n_fft,
"n_mels": n_mels,
# "win_length": win_length,
"hop_length": hop_length,
"mel_scale": "htk",
},
)
audio_ft = mfcc_transform(audio).squeeze(dim=0).transpose(0, 1).numpy()
return audio_ft
def get_mfcc_sepa(audio_fn, fps=15, sr=16000):
audio, sr_0 = ta.load(audio_fn)
if sr != sr_0:
audio = ta.transforms.Resample(sr_0, sr)(audio)
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
n_fft = 2048
if fps == 15:
hop_length = 1467
elif fps == 30:
hop_length = 734
n_mels = 256
n_mfcc = 64
mfcc_transform = ta_T.MFCC(
sample_rate=sr,
n_mfcc=n_mfcc,
melkwargs={
"n_fft": n_fft,
"n_mels": n_mels,
# "win_length": win_length,
"hop_length": hop_length,
"mel_scale": "htk",
},
)
audio_ft_0 = mfcc_transform(audio[0, :sr*2]).squeeze(dim=0).transpose(0,1).numpy()
audio_ft_1 = mfcc_transform(audio[0, sr*2:]).squeeze(dim=0).transpose(0,1).numpy()
audio_ft = np.concatenate((audio_ft_0, audio_ft_1), axis=0)
return audio_ft, audio_ft_0.shape[0]
def get_mfcc_old(wav_file):
sig, sample_rate = load_wav_old(wav_file)
mfcc = extract_mfcc(sig)
return mfcc
def smooth_geom(geom, mask: torch.Tensor = None, filter_size: int = 9, sigma: float = 2.0):
"""
:param geom: T x V x 3 tensor containing a temporal sequence of length T with V vertices in each frame
:param mask: V-dimensional Tensor containing a mask with vertices to be smoothed
:param filter_size: size of the Gaussian filter
:param sigma: standard deviation of the Gaussian filter
:return: T x V x 3 tensor containing smoothed geometry (i.e., smoothed in the area indicated by the mask)
"""
assert filter_size % 2 == 1, f"filter size must be odd but is {filter_size}"
# Gaussian smoothing (low-pass filtering)
fltr = np.arange(-(filter_size // 2), filter_size // 2 + 1)
fltr = np.exp(-0.5 * fltr ** 2 / sigma ** 2)
fltr = torch.Tensor(fltr) / np.sum(fltr)
# apply fltr
fltr = fltr.view(1, 1, -1).to(device=geom.device)
T, V = geom.shape[1], geom.shape[2]
g = torch.nn.functional.pad(
geom.permute(2, 0, 1).view(V, 1, T),
pad=[filter_size // 2, filter_size // 2], mode='replicate'
)
g = torch.nn.functional.conv1d(g, fltr).view(V, 1, T)
smoothed = g.permute(1, 2, 0).contiguous()
# blend smoothed signal with original signal
if mask is None:
return smoothed
else:
return smoothed * mask[None, :, None] + geom * (-mask[None, :, None] + 1) |