Spaces:
Build error
Build error
import os | |
import sys | |
sys.path.append(os.getcwd()) | |
from nets.layers import * | |
from nets.base import TrainWrapperBaseClass | |
# from nets.spg.faceformer import Faceformer | |
from nets.spg.s2g_face import Generator as s2g_face | |
from losses import KeypointLoss | |
from nets.utils import denormalize | |
from data_utils import get_mfcc_psf, get_mfcc_psf_min, get_mfcc_ta | |
import numpy as np | |
import torch.optim as optim | |
import torch.nn.functional as F | |
from sklearn.preprocessing import normalize | |
import smplx | |
class TrainWrapper(TrainWrapperBaseClass): | |
''' | |
a wrapper receving a batch from data_utils and calculate loss | |
''' | |
def __init__(self, args, config): | |
self.args = args | |
self.config = config | |
self.device = torch.device(self.args.gpu) | |
self.global_step = 0 | |
self.convert_to_6d = self.config.Data.pose.convert_to_6d | |
self.expression = self.config.Data.pose.expression | |
self.epoch = 0 | |
self.init_params() | |
self.num_classes = 4 | |
self.generator = s2g_face( | |
n_poses=self.config.Data.pose.generate_length, | |
each_dim=self.each_dim, | |
dim_list=self.dim_list, | |
training=not self.args.infer, | |
device=self.device, | |
identity=False if self.convert_to_6d else True, | |
num_classes=self.num_classes, | |
).to(self.device) | |
# self.generator = Faceformer().to(self.device) | |
self.discriminator = None | |
self.am = None | |
self.MSELoss = KeypointLoss().to(self.device) | |
super().__init__(args, config) | |
def init_optimizer(self): | |
self.generator_optimizer = optim.SGD( | |
filter(lambda p: p.requires_grad,self.generator.parameters()), | |
lr=0.001, | |
momentum=0.9, | |
nesterov=False, | |
) | |
def init_params(self): | |
if self.convert_to_6d: | |
scale = 2 | |
else: | |
scale = 1 | |
global_orient = round(3 * scale) | |
leye_pose = reye_pose = round(3 * scale) | |
jaw_pose = round(3 * scale) | |
body_pose = round(63 * scale) | |
left_hand_pose = right_hand_pose = round(45 * scale) | |
if self.expression: | |
expression = 100 | |
else: | |
expression = 0 | |
b_j = 0 | |
jaw_dim = jaw_pose | |
b_e = b_j + jaw_dim | |
eye_dim = leye_pose + reye_pose | |
b_b = b_e + eye_dim | |
body_dim = global_orient + body_pose | |
b_h = b_b + body_dim | |
hand_dim = left_hand_pose + right_hand_pose | |
b_f = b_h + hand_dim | |
face_dim = expression | |
self.dim_list = [b_j, b_e, b_b, b_h, b_f] | |
self.full_dim = jaw_dim + eye_dim + body_dim + hand_dim + face_dim | |
self.pose = int(self.full_dim / round(3 * scale)) | |
self.each_dim = [jaw_dim, eye_dim + body_dim, hand_dim, face_dim] | |
def __call__(self, bat): | |
# assert (not self.args.infer), "infer mode" | |
self.global_step += 1 | |
total_loss = None | |
loss_dict = {} | |
aud, poses = bat['aud_feat'].to(self.device).to(torch.float32), bat['poses'].to(self.device).to(torch.float32) | |
id = bat['speaker'].to(self.device) - 20 | |
id = F.one_hot(id, self.num_classes) | |
aud = aud.permute(0, 2, 1) | |
gt_poses = poses.permute(0, 2, 1) | |
if self.expression: | |
expression = bat['expression'].to(self.device).to(torch.float32) | |
gt_poses = torch.cat([gt_poses, expression.permute(0, 2, 1)], dim=2) | |
pred_poses, _ = self.generator( | |
aud, | |
gt_poses, | |
id, | |
) | |
G_loss, G_loss_dict = self.get_loss( | |
pred_poses=pred_poses, | |
gt_poses=gt_poses, | |
pre_poses=None, | |
mode='training_G', | |
gt_conf=None, | |
aud=aud, | |
) | |
self.generator_optimizer.zero_grad() | |
G_loss.backward() | |
grad = torch.nn.utils.clip_grad_norm(self.generator.parameters(), self.config.Train.max_gradient_norm) | |
loss_dict['grad'] = grad.item() | |
self.generator_optimizer.step() | |
for key in list(G_loss_dict.keys()): | |
loss_dict[key] = G_loss_dict.get(key, 0).item() | |
return total_loss, loss_dict | |
def get_loss(self, | |
pred_poses, | |
gt_poses, | |
pre_poses, | |
aud, | |
mode='training_G', | |
gt_conf=None, | |
exp=1, | |
gt_nzero=None, | |
pre_nzero=None, | |
): | |
loss_dict = {} | |
[b_j, b_e, b_b, b_h, b_f] = self.dim_list | |
MSELoss = torch.mean(torch.abs(pred_poses[:, :, :6] - gt_poses[:, :, :6])) | |
if self.expression: | |
expl = torch.mean((pred_poses[:, :, -100:] - gt_poses[:, :, -100:])**2) | |
else: | |
expl = 0 | |
gen_loss = expl + MSELoss | |
loss_dict['MSELoss'] = MSELoss | |
if self.expression: | |
loss_dict['exp_loss'] = expl | |
return gen_loss, loss_dict | |
def infer_on_audio(self, aud_fn, id=None, initial_pose=None, norm_stats=None, w_pre=False, frame=None, am=None, am_sr=16000, **kwargs): | |
''' | |
initial_pose: (B, C, T), normalized | |
(aud_fn, txgfile) -> generated motion (B, T, C) | |
''' | |
output = [] | |
# assert self.args.infer, "train mode" | |
self.generator.eval() | |
if self.config.Data.pose.normalization: | |
assert norm_stats is not None | |
data_mean = norm_stats[0] | |
data_std = norm_stats[1] | |
# assert initial_pose.shape[-1] == pre_length | |
if initial_pose is not None: | |
gt = initial_pose[:,:,:].permute(0, 2, 1).to(self.generator.device).to(torch.float32) | |
pre_poses = initial_pose[:,:,:15].permute(0, 2, 1).to(self.generator.device).to(torch.float32) | |
poses = initial_pose.permute(0, 2, 1).to(self.generator.device).to(torch.float32) | |
B = pre_poses.shape[0] | |
else: | |
gt = None | |
pre_poses=None | |
B = 1 | |
if type(aud_fn) == torch.Tensor: | |
aud_feat = torch.tensor(aud_fn, dtype=torch.float32).to(self.generator.device) | |
num_poses_to_generate = aud_feat.shape[-1] | |
else: | |
aud_feat = get_mfcc_ta(aud_fn, am=am, am_sr=am_sr, fps=30, encoder_choice='faceformer') | |
aud_feat = aud_feat[np.newaxis, ...].repeat(B, axis=0) | |
aud_feat = torch.tensor(aud_feat, dtype=torch.float32).to(self.generator.device).transpose(1, 2) | |
if frame is None: | |
frame = aud_feat.shape[2]*30//16000 | |
# | |
if id is None: | |
id = torch.tensor([[0, 0, 0, 0]], dtype=torch.float32, device=self.generator.device) | |
else: | |
id = F.one_hot(id, self.num_classes).to(self.generator.device) | |
with torch.no_grad(): | |
pred_poses = self.generator(aud_feat, pre_poses, id, time_steps=frame)[0] | |
pred_poses = pred_poses.cpu().numpy() | |
output = pred_poses | |
if self.config.Data.pose.normalization: | |
output = denormalize(output, data_mean, data_std) | |
return output | |
def generate(self, wv2_feat, frame): | |
''' | |
initial_pose: (B, C, T), normalized | |
(aud_fn, txgfile) -> generated motion (B, T, C) | |
''' | |
output = [] | |
# assert self.args.infer, "train mode" | |
self.generator.eval() | |
B = 1 | |
id = torch.tensor([[0, 0, 0, 0]], dtype=torch.float32, device=self.generator.device) | |
id = id.repeat(wv2_feat.shape[0], 1) | |
with torch.no_grad(): | |
pred_poses = self.generator(wv2_feat, None, id, time_steps=frame)[0] | |
return pred_poses | |